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Abstract Bipartite graphs are common in many complex

systems as they describe a relationship between two dif-

ferent kinds of actors, e.g., genes and proteins, metabolites

and enzymes, authors and articles, or products and con-

sumers. A common approach to analyze them is to build a

graph between the nodes on one side depending on their

relationships with nodes on the other side; this so-called

one-mode projection is a crucial step for all further analysis

but a systematic approach to it was lacking so far. Here, we

present a systematic approach that evaluates the signifi-

cance of the co-occurrence for each pair of nodes v, w, i.e.,

the number of common neighbors of v and w. It turns out

that this can be seen as a special case of evaluating the

interestingness of an association rule in data mining. Based

on this connection we show that classic interestingness

measures in data mining cannot be applied to evaluate most

real-world product-consumer relationship data. We thus

introduce generalized interestingness measures for both,

one-mode projections of bipartite graphs and data mining

and show their robustness and stability by example. We

also provide theoretical results that show that the old

method cannot even be used as an approximative method.

In a last step we show that the new interestingness mea-

sures show stable and significant results that result in

attractive one-mode projections of bipartite graphs.

Keywords Bipartite graphs � One-mode projection �
Association rules � Interestingness measures

1 Introduction

Many relationships in complex systems are best represented

by a bipartite graph: metabolites that are transformed by

enzymes (Ravasz et al. 2002), scientists that co-author a

paper (Newman 2001a, b), finches and their island habitats

(Cobb and Chen 2003), genes and the diseases with which

they are associated (Goh et al. 2007), or products that are

bought by consumers (Gionis et al. 2007). Since most tools

in network analysis are focused on general graphs, it is a

common approach to analyzing bipartite networks to project

them onto one of their sides. In this so-called one-mode

projection the nodes on one of the sides are connected with

each other according to their connection pattern to nodes on

the other side; the nodes of the other side are discarded

(Wasserman and Faust 1999, Chap 8). With this approach,

metabolites are connected by an edge if they are transformed

into each other by an enzyme, scientists are connected if they

have written papers together, and genes are connected if they

cause the same disease. Vice versa, enzymes are connected

if they transform the same metabolites, papers are connected

if they share an author, and two different disease are con-

nected if they are caused by the same gene.

Zhou et al. have already stated that a reasonable one-

mode projection of product-consumer networks can be

used for deriving recommendations (Zhou et al. 2007).

Classic recommendation systems are often built on so-

called association rules, i.e., on rules like ‘if product A and

B are bought, then product C, D, and E are also often

bought’. If such an association rule is true for many con-

sumers, then it is natural to recommend products C, D, and
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E to any person who has bought A and B. We see an even

deeper connection between the two research questions of

finding interesting association rules and of finding a rea-

sonable one-mode projection. In this article we will show

that association rules between single products, i.e., of the

type ‘if A then B’, can be used to build a reasonable one-

mode projection. Vice versa, the resulting graph can then

be used to derive candidates for more complex association

rules, as, for example, proposed by Raeder and Chawla

(2011). We also show on two examples that the classic

interestingness measures for association rules need to be

generalized with respect to new null-models.

We show the usefulness of one of the newly general-

ized interestingness measures, the leverageFDSM, as the

basis for a one-mode projection on a data set of film

ratings. The leverageFDSM assigns a real value to all pairs

of films, and thus, for each film all other films can be

ranked according to their leverageFDSM value. To evaluate

whether the topmost ranked films are really suitable

neighbors in a one-mode projection of the graph, a subset

of all films is extracted that contains parts of series. For

almost all films in this set, our automatic and otherwise

oblivious algorithm is able to identify the other parts of

the same series among the top ten ranks, using only the

rating pattern of a subset of 20,000 users. This implies that

a reasonable one-mode projection can be achieved by

connecting each vertex with its topmost ranked other

films, as we will discuss in this article. The article thus

comprises results for two different communities, network

analysis and data mining.

The article is based on a shorter version by one of the

authors (Zweig 2010), extended by additional theoretical

and empirical results, and it is organized as follows: Sect. 2

gives the necessary definitions, and Sect. 3 describes the

state of the art and the relationship between one-mode

projections of bipartite graphs and the evaluation of asso-

ciation rules. Section 4 introduces the new method to build

a sparse one-mode projection of bipartite graphs, followed

by theoretical results on the new and the classic method in

Sect. 5. In Sect. 6 we show experimental results on a large

film rating-consumer data set.1 In Sect. 7.3 we summarize

the implications for market basket analysis based on

association rules. We conclude the article by open ques-

tions and a discussion in Sect. 7.

2 Definitions

The definitions are given within the context of product-

consumer networks but they are applicable to any kind of

bipartite graphs. Let U = {u1, u2,…, ur} denote a set of

users or customers, and P = {p1, p2,…, pl} a set of

products. Let E � U � P be a set of pairs of users and

products ux, pi, denoting that user ux has bought product pi.

Note that E is a set, not a multi–set, i.e., we assume that

each user buys each product at most once. The sets U, P, E

can also be represented by a bipartite graph G = (U [
P, E) where U is a set of r and P a set of l vertices that are

connected by an edge iff (ux, pi) [ E with 1 B x B r and

1 B i B l. We will denote the vertex and the represented

object by the same label as long as there is no ambiguity.

Let then m: = |E| denote the cardinality of this set; m is at

the same time the number of edges in the bipartite graph.

By deg(ux) we denote the degree of user ux, i.e., the car-

dinality of the set of pairs in E that contain ux. Analo-

gously, deg(pi) is defined as the cardinality of the set of

pairs in E that contain pi. Note that V ux, deg(ux) B l and V
pj, deg(pj) B r. If the data is represented in a 0-1 table

where products are in rows and users in columns, then

deg(pi) is equal to the i-th row sum, and deg(ux) is equal to

the x-th column sum.
The nodes on both sides of the graph are identified by

an index from 1 to l and 1 to r, respectively. As the left-

hand degree sequence L we define the sequence of

degrees of nodes in P, as the right-hand degree sequence

R we define the sequence of degrees of nodes in U, sorted

by their respective degree. If only the degree sequences of

a bipartite graph were known, then the best estimate of

the probability that a user ux has bought product pi is

given by P(pi) = deg(pi)/r. This estimate is also called the

support of pi, denoted by supp(pi). Analogously, the

probability that any product pi drawn uniformly at random

was bought by user ux is given by P(ux) = deg(ux)/l.

Given a bipartite graph G = (U [ P, E), for any pair of

products pi; pj; i 6¼ j we define as their co-occurrence,

denoted by cooccG(pi, pj), the cardinality of the set of

users that bought both products, i.e., of all users ux where

(ux, pi) and (ux, pj) [ E. The support, denoted by

suppG(pi, pj), is then defined as cooccG(pi, pj)/r. The

support can be interpreted as the probability that any user

drawn uniformly at random has bought both products.

Since we exclude self-loops, cooccG(pi, pi) is not defined.

Note that we might omit the index if the graph G is

clearly defined in the given context. The definitions can

be generalized for subsets of products X, where supp(X) is

the fraction of users who bought all products in X and

coocc(X) is their absolute number.
By GðL;RÞ we denote the set of all bipartite graphs

G0 = (U [ P, E0) that obey given degree sequences L, R.

Note that we allow neither multi-edges nor self–loops.

Given any two degree sequences L and R, it is easy to

decide whether the set GðL;RÞ is empty or not (Brualdi

1980, 2006): Let R̂ and L̂ denote the non-increasingly

1 This part reproduces parts of the conference version published with

IEEE (Zweig 2010). Reproduced with permission.
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sorted versions of R and L, i.e., their monotone rear-

rangements. Let R* denote R̂’s conjugated vector, defined

as:

R�j ¼ jf1� i� rjdegðuiÞ� jgj; ð1Þ

i.e., R* contains at j the number of elements in R that are

not smaller than j. Note that R* is by definition non-

decreasingly sorted. R* is said to majorize vector L̂ if

Xk

i¼0

l̂i�
Xk

j¼0

r�j ; 8k� l; ð2Þ

with equality for k = l. According to the Gale (1957)/

Ryser (1963, pp. 63–65)/Ford and Fulkerson (1962, pp. 79–

82) theorem, GðL;RÞ is non–empty iff R* dominates L̂.

With these definitions we will now portrait the con-

nection between association rules, the significance of net-

work motifs, and one-mode projections of bipartite graphs.

3 State of the art

3.1 Association rules

Some products are often bought together and their place-

ment in a supermarket might be a crucial element for the

market’s success. Similarly, if many customers like film A

and film B, it is reasonable to recommend film B to all

customers who already watched and liked film A. The

understanding of which products are most often bought

together thus provides important information for recom-

mendation systems and shop design. This information

about products that are frequently bought together can be

computed by a so-called market basket analysis where each

basket and each product is represented by a node, and a

basket is connected by an edge with all the products it

contains. To understand which products are likely to be

bought together, a market basket analysis tries to identify

which subsets of products are significantly bought more

often together than expected by pure chance. The absolute

number of times subsets of products have been bought

together, i.e., the number of their co-occurrence in market

baskets, fails as a measure if some products are in general

bought much more often than others. This is obviously the

case for most real-world product-consumer relationships in

which butter and bread are bought on a daily basis while

TVs and cars are not, and where a few books and films

become bestsellers while many never sell more than a few

hundreds. Association rules are simple implications of the

type X ? Y where X and Y are subsets of products (with

X \ Y = [) which are extracted from a given data set

(Agrawal et al. 1993; Hipp et al. 2000). Let P(XY) denote

the fraction of baskets that contain all products from both

subsets X and Y. Any association rule can be assigned an

interestingness that tries to capture how useful the rule is.

Piatetsky-Shapiro proposed that a good interestingness

measure F should fulfill the following requirements

(Piatetsky-Shapiro 1991):

1. F(X,Y) = 0 if X and Y are statistically independent,

that is, P(XY) = P(X)P(Y).

2. Monotonicity:

(a) F(X, Y) increases monotonically with P(XY)

when P(X) and P(Y) remain the same;

(b) F(X, Y) decreases monotonically with P(X) (or

P(Y)) when P(XY) and P(Y) (or P(X)) remain the

same.

In this article we will concentrate on two intuitive

interestingness measures, called leverage (introduced in

Piatetsky-Shapiro 1991) and lift (introduced in Brin et al.

1997). Let the association rule of interest be X ? Y. The

leverage lev(X, Y) of two subsets of products is designed to

measure the difference between the observed and the

expected support of X and Y (Piatetsky-Shapiro 1991). It is

defined as

levðX; YÞ ¼ suppðX; YÞ � suppðXÞ � suppðYÞ ð3Þ

levðX; YÞ ¼ cooccðX; YÞ
r

� degðXÞ � degðYÞ
r2

: ð4Þ

The lift describes the fraction between the observed and the

expected support of X and Y and is defined as

liftðX; YÞ ¼ suppðX; YÞ
suppðXÞ � suppðYÞ ð5Þ

liftðX; YÞ ¼ cocccðX; YÞ � r
degðXÞ � degðYÞ: ð6Þ

Both measures contain a term that describes the expected

co-occurrence. The idea behind the expectation model is

that—when two probabilities are independent—the

probability to observe both events at the same time is

described by the product of the single probabilities. Thus,

under the assumption of independence, the probability (or

frequency) with which we expect two subsets of products

to be bought is given by the product of their respective

probabilities. In summary, the underlying simple

independence model assumes the following two

equivalences to hold if the subsets of products X and Y

are bought independently:

PðX; YÞ ¼ PðXÞPðYÞ ð7Þ

and

PðX j YÞ ¼ PðX; YÞ=PðYÞ ¼ PðXÞ: ð8Þ

Although the theory behind all of these interestingness

measures is very clear and straightforward, it is known for
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long that the results are difficult to interpret. One of the first

article on association rules analyzed the US census data

(Brin et al. 1997). Brin et al. state that it is very difficult to

quantify how well association rules (which they call

implication rules) work. The authors state ironically, that

the most interesting rules they found where: … five year

olds don’t work, unemployed resident’s don’t earn income

from work, men don’t give birth, and many other inter-

esting facts.2

In their summary they write:

Looking over the implication rules generated on

census data was educational. First, it was educational

because most of the rules themselves were not. The

rules that came out on top were things that were

obvious.

They propose to look for association rules with a med-

ium interestingness. However, of those rules there were

many (about 20,000). We will show in the following that a

large number of seemingly interesting association rules

might be based on the wrong underlying independence

model and that a network analytic perspective on evalu-

ating the interestingness of association rules relieves this

problem to a large extent.

3.2 One-mode projection

Bipartite graphs are common in all kinds of complex sys-

tems and the co-actor network used in Watts’ and Strogatz’

seminal paper was actually a one-mode projection of the

bipartite film-cast network (Watts and Strogatz 1998).

They chose the most simple method by connecting any two

actors if they were casted for at least one common film. In

general, this method introduces many cliques in the

resulting graph and does not differentiate between two

nodes that share many neighbors and those that share only

one. To relieve the latter, a simple weight on the edges can

present the number of shared neighbors. This weight can

then also be used to remove edges with a weight below

some chosen threshold t. The simplest approach above is

then equal to setting t : 1.

A different approach focuses on how to treat nodes with

very different degrees, e.g., articles with only two authors

or articles with many authors. To address this problem,

Newman suggested to assign a weight to all pairs of

neighbors of v that is inversely proportional to v’s degree:

f(v) = 1/(deg(v) - 1) (Newman 2001a, b). The motivation

is to approximate the strength of the bond between any two

authors. The total weight between any two nodes is then

defined as the sum of the weights of all shared neighbors.

Of course, any other function could be chosen as well to

assign the weights, e.g., an inverse-quadratic function.

A third approach tries to approximate a saturating effect:

it can be assumed that two authors already know each other

quite well after they have written some papers together.

The next co-authored paper might not deepen the strength

of their relationship much more. Li et al. thus suggest to

use a hyperbolic tangent function (Li et al. 2005). Again,

any other function g(coocc(v, w)) depending on coo-

cc(v, w) could be used to assign weights between v and w.

All three methods make use of some arbitrary choice:

either of a threshold or a function to evaluate whether the

number of co-occurrences is high enough to imply an edge

between the nodes. The motivation for a new method was

to evaluate whether the co-occurrence between any two

nodes is significant. To understand this, it is easiest to

consider the co-occurrence of two vertices as a special case

of an association rule in which the sets X and Y just consist

of a single node. Then we can in principle use interest-

ingness measures as the ones above to evaluate their co-

occurrence. However, from the perspective of a classic

network analytic viewpoint the co-occurrence of any two

vertices in a bipartite network can also be considered as a

special type of a network motif as described in the next

section. As we will sketch in the following, the significance

of network motifs can also easily be tested for.

3.3 Network motifs and their significance

Network motif analysis was introduced by Alon et al. and

its application to biological data sets were reviewed in his

book (Alon 2006; Milo et al. 2002). A network motif is a

subgraph which occurs significantly more often in a given

graph than in a suitable corresponding random graph. The

suitability of a random graph is often debated and there are

many different random graph models to choose from. A

random graph is said to be corresponding to some given

graph G if it maintains certain structural elements of G. In

all cases, a corresponding random graph needs to maintain

at least the same number of nodes and edges. Besides this,

the edges are placed anew and uniformly at random. Next

to the size of the graph, other structural elements might be

maintained as well. Popular structural elements to maintain

are for example the degree of each single vertex (Girvan

and Newman 2002) or the number of cycles of length 3 or 4

(Milo et al. 2002).

It is convenient to define a set GðGÞ that contains all

possible graphs that maintain the given structural elements

of G and perturb all others. This set is called a random

graph model. Most often, these sets are too large to

enumerate all of the members from the random graph

model. However, it is often possible to sample uniformly

at random (u.a.r.) from the model. A well-known model is2 According to an interestingness measure called conviction.
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the Erd}os-Rényi graph model Gðn;mÞ (Bollobás 2001),

which consists of all graph which contain exactly m edges

and n nodes. A graph can be sampled u.a.r. from Gðn;mÞ
by building a set of all possible pairs of nodes and

drawing exactly m of these pairs u.a.r. Another important

random graph model was introduced by Gilbert; it is

called the Gðn; pÞ model. For any given n and 0 B p B 1,

a sample from Gðn; pÞ can be drawn u.a.r. by connecting

any two nodes with probability p. For historical reasons,

the latter model is often addressed as the Erd}os-Rényi

graph model.

By maintaining some structural elements and random-

izing the rest, the occurrence of any network motif of

interest can be compared to its occurrence in a sample of

the chosen corresponding random graph model. If its

occurrence is not significantly higher or lower than the one

in the sample, it can be explained by the random graph

model. For example, if a graph has 10 nodes and 30 edges,

a clustering coefficient of 0.8 of a single vertex is not

surprising but within the range of the possible fluctuations

of a graph with this edge density. The edge density alone

already explains the observation of a single vertex with a

high clustering coefficient. If the occurrence of a network

motif is approximately normally distributed, the observed

occurrence occ(M) of the motif M can be evaluated by its

z-score as described by Milo et al. (2002):

z-scoreðMÞ ¼ occðMÞ � occexpðMÞ
rexpðMÞ

ð9Þ

where occexpðMÞ denotes the mean of the experimentally

observed occurrence of M in the sample, and rexpðMÞ
denotes its standard variation. A z-score of higher than 3.29

or lower than 3.29 has a probability p \ 0.001 to occur and

can thus be seen as a significant event.3

When network motif analysis was introduced (Milo

et al. 2002) the paper was immediately followed by a

discussion of the most suitable corresponding random

graph model. As Artzy-Randrup et al. pointed out in their

article, other random graph models than the most simple

Erd}os-Rényi graph model would result in very different

significance levels of certain motifs (Artzy-Randrup et al.

2004). Thus, the choice of a suitable random graph model

is crucial in the correct evaluation of the significance of a

network motif.

In the following we will use the general approach of

determining significant network motifs to build a one-

mode projection of bipartite graphs and especially discuss

the crucial role of choosing the best random graph

model.

4 A systematic approach to one-mode projections

Our method to build a one-mode projection of bipartite

graphs follows the systematic approach of evaluating the

significance of the occurrence of network motifs. As

sketched above, this is done by comparison with their

occurrence in a suitable corresponding random graph

models. The co-occurrence of any two nodes on one side of

a bipartite graph is then just a special case of a network

motif; interestingly, it is as well a special case of an

association rule, in which X and Y only contain a single

product (or the node which it represents). Based on this, we

can compare the co-occurrence in a given network with its

expected value in any suitable corresponding random graph

model. The expected values in the chosen random graph

model can then replace the respective terms in the various

interestingness measures cited above. We thus propose the

following systematic approach to one-mode projections:

4.1 Systematic approach to one-mode projections

1. Choose a connection pattern (or motif) M of v, w from

the side of interest to nodes on the other side, e.g., the

co-occurrence coocc(v, w).

2. Choose a suitable random graph model G for a given

bipartite graph;

3. Compute the expected occurrence of pattern M in G or

compute the mean of the observed occurrences of M in

a sample of G.

4. Quantify the interestingness of the occurrence of M in

comparison with the expected occurrence of M by,

e.g., dividing the former by the latter (lift), subtracting

the latter from the former (leverage), or by computing

the z-score.

5. Choose those pairs v, w with the highest interesting-

ness and connect them in the one-mode projection.

For this article, we have chosen the co-occurrence as the

motif of interest and the leverage as the measure of inter-

estingness. The next step is then to choose a suitable ran-

dom graph model to evaluate the significance of this motif.

We will now show that the simple statistical independence

model (SIM) on which the leverage and lift are based,

corresponds to a random graph model which we will call

the simple bipartite random graph model (SiBiRaG).

4.1.1 The simple independence model (SIM)

and the simple bipartite random graph model

(SiBiRaG)

As described above, the SIM assumes that the probabilities

of buying single products are independent and that thus the

event of buying two different products can be expressed by

3 This is given under the assumption that the occurrence of M in the

random graph model is normally distributed.
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the product of the two respective probabilities in case of

independence (Eqs. 7 and 8).

This model can be interpreted as the outcome of a

simple bipartite random graph model in which the proba-

bility P(pi, ux) that node pi is connected to node ux is given

by deg(pi)/r. I.e., this model assumes that every customer

buys pi with the same probability and that thus every node

representing a customer has the same probability deg(pi)/r

to be connected to some product node pi. In this model, the

probability P(pi, pj) that two products pi, pj are bought by

the same customer ux is simply given by the product of the

two probabilities P(pi, ux)P(pj, ux). The expected number

of co-occurrences E [cooccSIM(pi, pj)] in the simple

bipartite random graph model (SiRaBiG) is then given by

summing over all customers:

E½cooccSiBiRaGðpi; pjÞ	 ¼
X

ux2U

Pðpi; uxÞPðpj; uxÞ ð10Þ

E½cooccSiBiRaGðpi; pjÞ	 ¼
degðpiÞdegðpjÞ

r
: ð11Þ

It can now be seen that the expected support in this model,

i.e., E½cooccSiBiRaGðpi; pjÞ	=r ¼ E½suppSiBiRaGðpi; pjÞ	 is

given by
degðpiÞ�degðpjÞ

r2 just as in Eq. 7. From this, also Eq. 8

follows. We have now shown that SIM in the statistical

analysis and SiBiRAG in the network motif analysis

are absolutely equivalent. We can furthermore equate

E [cooccSiBiRaG(pi, pj)] and E [cooccSIM(pi, pj)].

Observation 1 The statistical independence model (SIM)

underlying the leverage and lift can be identified with the

simple bipartite random graph model (SiBiRaG) in the

statistical analysis of bipartite network motifs.

In SIM and SiBiRaG only three structural elements are

maintained: the number of nodes n on both sides, the

number of edges m between them, and the degree sequence

L of the side of interest. Since the expected co-occurrence

between any two nodes can be directly computed, it is not

even necessary to sample from SiBiRaG. This is compu-

tationally very advantageous.

Regarding the identity between SIM and SiBiRaG, it is

natural to introduce the z-score as a further interestingness

measure of the co-occurrence:

z-scoreSIM ¼
cooccðx; yÞ � E½cooccSIM	

rSIM

; ð12Þ

where rSIM is the standard deviation of SIM.

Although SIM has the great advantage of yielding

closed formulas for the expected values of the co-occur-

rence of two nodes, it is not the only possible random graph

model that might be suitable. In general we want to use a

random graph model that is still simple but maintains all

structural elements that need to be maintained.

A very important structural element of many real-world

complex networks is that degree distributions are skewed

(Dorogovtsev and Mendes 2003). Figure 1 shows the

degree distributions of 10 samples of 10,000 users each that

rated a subset out of 17,770 films (description of the data

set in Sect. 6.1). It can be clearly seen that the films’ degree

distribution and the users’ degree distribution are very

skewed in all data samples, i.e., most films are seen by a

few users but some are seen by almost all. Vice versa, some

users rate only a few films, but some of them rate almost all

of them. If this is a persistent behavior of users, a natural

random bipartite graph model is then the fixed degree

sequence model which maintains the degree sequence of

both sides of the graph as sketched in the following.

4.1.2 Fixed degree sequences model (FDSM)

Although SIM (and thus SiBiRaG) seems to be reasonable

and is classically used, Gionis et al. argued that it is more

appropriate to use a model conditional on both degree

 1
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Fig. 1 a The degree distribution of users in 10 independent samples

of 10,000 users that rated subsets of 17,770 films. b The according

degree distributions of the films. nk denotes the number of nodes with

the given degree, binned into bins of size 100 each, and plotted at the

mid of each bin
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sequences (Gionis et al. 2007). We will denote this model

by FDSM, the fixed degree sequences model. In this model,

the expected co-occurrence E [cooccFDSM(pi, pj)] is

defined as

E½cooccFDSMðpi; pjÞ	 ¼
1

jGðL;RÞj
X

G2GðL;RÞ
cooccGðpi; pjÞ;

ð13Þ

i.e., we sum over the real co-occurrences of pi, pj in all

feasible graphs in GðL;RÞ and divide by the number of

graphs in this set. A small example is given in Fig. 2.

Of course, statistical models should always reflect as

much of a known structure as possible; they thus enable

statements about new structures whose occurrence cannot

be implied by all known structures. On the other hand, a

too detailed model will reduce its applicability and it might

also be computationally too expensive. The FDSM is

clearly the better statistical model but it is also computa-

tionally quite expensive: without doubt it is impossible to

enumerate all graphs in GðL;RÞ for even moderate size

bipartite graphs.4 Thus, we have to sample from GðL;RÞ
with uniform probability and average the observed co-

occurrences of all pairs of nodes in this sample to get an

approximation of the expected co-occurrence. There are

mainly two different approaches to sample from FDSM:

1. A Markov Chain Monte Carlo sampling as described

in, e.g., (Brualdi 2006; Cobb and Chen 2003; Gionis

et al. 2007; Holmes and Jones 1986).

2. Importance Sampling as described, e.g., in Chen et al.

(2005) and Admiraal and Handcock (2008).

Note that the sampling itself is not the most time-con-

suming step: the main problem is to compute the co-

occurrence values of all pairs of nodes for each sampled

graph.

For the rest of the text we just assume that there is a

method with which we can sample uniformly at random

from FDSM and that we approximate expected values by

averages of observed values in large enough samples; we

thus apply the same approach as in the general network

motif analysis. It is now obvious that the main advantage of

SIM is that the expected values of co-occurrences can be

directly computed, while the FDSM is a more detailed

model but also computationally much more involved.

In the following we will argue why SIM is nonetheless

not suitable for most real-world data sets and FDSM is the

best alternative. Although Gionis et al. (2007) gave some

anecdotal examples of why the FDSM is more appropriate,

there is so far no theoretical result that shows why and

when the SIM is not suitable. In the following, we extend

their work by presenting theoretical observations of both

models that show clearly why and when SIM fails.

5 Why SIM is not suitable for most real-world

networks

Without loss of generality, we will be interested in the co-

occurrence of products pi, pj [ P in the rows of the 0-1

table, and thus on the nodes of the left-hand side of the

respective bipartite graph, i.e., the set of products P. The

results can be directly transferred to the co-occurrence of

users by transposing the table.

5.1 Expected total number of co-occurrence events

We first determine the total number of co-occurrences of

vertices in P for any given data set: each vertex ux in U on

the right-hand side of the graph induces degðuxÞ
2

� �
co-

occurrences because any two products in the user’s market

basket co-occur together. We denote the sum of all co-

occurrences in graph G by Coocc(G):

CooccðGÞ ¼
X

ux2U

degðuxÞ
2

� �
: ð14Þ

Since Coocc(G) is sufficiently defined by the degree

sequence R alone, it can also be denoted by Coocc(R).

Coocc(G) = Coocc(R) can also be expressed in terms of

r, m, and the variance Var(R) of the degree sequence. Note

that

X

ux2U

degðuxÞ
2

� �
¼ 1=2

X

ux2U

degðuxÞ2 � m=2

and

VarðRÞ ¼ 1=r
X

ux2U

degðuxÞ2 � lðRÞ

where l(R) is the average degree in R. It follows that

A

B

C

1

2

3

(a) A

B

C

1

2

3

(b) A

B

C

1

2

3

(c)

Fig. 2 GðL;RÞ for L = {2, 2, 2} and R = {3, 2, 1}. It can be seen

that A must be connected to all vertices on the left-hand side. B can be

connected to any two vertices on the left-hand side, while C is

connected to the left-over vertex. E [cooccFDSM(i, j)] for any two

vertices i, j on the left is 4/3. E [cooccFDSM(A, B)] = 2, E [coo-
ccFDSM(B, C)] = 0, and E [cooccFDSM(A,C)] = 1

4 Note that the actual number jGðL;RÞj of graphs in GðL;RÞ is not yet

described by a closed formula (Greenhill and McKay 2008; Barvinok

2008).
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CooccðRÞ ¼ r

2
� VarðRÞ þ r

2
lðRÞ2 � m=2 ð15Þ

CooccðRÞ ¼ r

2
� VarðRÞ þ m

2
ðlðRÞ � 1Þ; ð16Þ

where the last equation follows from l(R) = m/r. It thus

follows that even if m and r are fixed, the total co-occur-

rence Coocc(R) is still linear in the variance of the degree

sequence.

Let now L, R be given, and let G = (L, R, E) be some

graph of GðL;RÞ.

Observation 2 For any graph G ¼ ðL;R;EÞ; the sum
X

pi2L

X

pj2L;j [ i

cooccðpi; pjÞ ¼ CooccðRÞ ð17Þ

i.e., the sum of all co-occurrence values on the left -hand

side has to equal the number CooccðGÞof co-occurrences

induced by the right side.

Justification 1 On both sides of the equation, we count

the same quantity from two different perspectives: once

from the perspective of the products and once from the

perspective of the users. The total amount of co-occurrence

events must of course be equal.

It can be expected that any reasonable suitable random

graph model needs to predict the correct total number of

co-occurrence events. That is, we require that the sum of all

expected co-occurrences of vertices in L for some given

degree sequences L, R equals CooccðRÞ. We will now

show that this is the case for the FDSM:

Observation 3 The sum of all expected co-occurrences

of vertices in L in FDSM equals Coocc(R) for all degree

sequences L, R.

Proof
X

pi2L

X

pj2L;i 6¼j

E½cooccFDSMðpi; pjÞ	 ð18Þ

¼
X

pi2L

X

pj2L;i6¼j

1

jGðL;RÞj
X

G2GðL;RÞ
cooccðpi; pjÞ ð19Þ

¼ 1

jGðL;RÞj
X

G2GðL;RÞ

X

pi2L

X

pj2L;i6¼j

cooccðpi; pjÞ ð20Þ

¼ 1

jGðL;RÞj
X

G2GðL;RÞ
CooccðRÞ ð21Þ

¼ CooccðRÞ ð22Þ

It is, however, not true for SiBiRaG and thus for SIM:

Observation 4 SIM implicitly claims that the degree

sequence on the right-hand side can be approximated by a

normal distribution.

Justification 2 The independence model assumes that

each product has a probability of deg(pi)/r to be connected

to any of the nodes representing the users. That means that

each user has an expected degree of
P

i [ L deg(pi)/r = m/r,

and the degree sequence can be approximated by a normal

distribution for large data sets.

In SIM all users have approximately the same degree

and the total number of co-occurrence events only depends

on the degree sequence of L:

Lemma 1 The total number of co-occurrences of pairs

pi, pj predicted by SIM is only depending on the degree

sequence of L.

Proof The sum of the expected co-occurrences E [Coo-

ccSIM(G)] in SIM is given by

1

2

X

pi2L

X

pj 6¼pi2L

E½cooccSIMðpi; pjÞ	 ð23Þ

¼ 1

2

X

pi2L

X

pj 6¼pi2L

degðpiÞdegðpjÞ
r

ð24Þ

¼ 1

2r

X

pi2L

degðpiÞðm� degðpiÞÞ ð25Þ

¼ m2

2r
� 1

2r

X

pi2L

degðpiÞ2: ð26Þ

h

Equation 17 already showed that for any given graph G

the real number of all co-occurrences of vertices in L

equals Coocc(R) and thus only depends on R. The higher

the variance of R the larger is Coocc(R). For large devia-

tions between E [CooccSIM(G)] and Coocc(R), it is thus

clear that the predictions by SIM must fail. This can be best

shown on a worst-case example.

Theorem 1 There is a family of bipartite graphs

G(n), representing n users and n products, such that the

difference of the total number of co-occurrence events

predicted by SIM and FDSM is in Xðn3Þ.

Fig. 3 An example of

G(n) with n = 5
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Proof We first introduce the family G(n), depicted in

Fig. 3 for n = 5. In general, G(n) is a bipartite graph

between n products and n users, with L = R = {1, 2,…, n}.

A close inspection reveals that for every vertex there is

exactly one subset of possible neighbors due to the con-

straint that no multi-edges are allowed. More generic,

the only bipartite graph satisfying L, R is given

by E ¼ ffux; pig j 1� x� i� ng. It follows that the

observed co-occurrence and the expected co-occurrence

E [cooccFDSM(pi, pj)] is given by min{i, j}.

Coocc(R) is given by:

CooccðRÞ ¼
X

i2R

iði� 1Þ
2

ð27Þ

¼ 1

2

X

i2R

i2 � nðnþ 1Þ=2 ð28Þ

¼ n3

6
þ Oðn2Þ ð29Þ

In SIM, the expected co-occurrence of two vertices pi, pj is

given by ij/n. The total number of co-occurrence events E

[CooccSIM(G)] in SIM is thus given by:

E CooccSIMðGÞ½ 	 ¼
X

i2L

X

j [ i2L

ij

n
ð30Þ

¼ ðnþ 1Þ
2

X

i2L

i� 1

2n

X

i2L

i3 � 1

2n

X

i2L

i2 ð31Þ

¼ n3

8
þ Oðn2Þ: ð32Þ

Thus, the difference between the real number of co-

occurrence events in G(n) and the one predicted by SIM is

in Xðn3Þ. h

It now becomes obvious that the main problem of SIM

is its underestimation of the total number of co-occur-

rence events when R shows a large variance. It follows

that FDSM should be used whenever the predicted total

number of co-occurrence events in SIM deviates strongly

from the real number of co-occurrence events in the

given data set:

Corollary 1 Let G = (L, R, E), where w.l.o.g. L contains

the degrees of the side of interest. If the total number of co-

occurrence events Coocc(R) as described in Eq. 14 devi-

ates from the expected total number E [CooccSIM(G)] of

co-occurrence events in SIM as given by Eq. 23, SIM is not

suitable as a null-hypothesis model. This is the case for

most real-world data sets, since the deviation of the two

values increases with the variance of R and most real-

world networks show degree sequences with a large vari-

ance (Newman et al. 2006) (see Fig. 1).

5.2 Contingency tables in SIM and FDSM

Another important statement concerns so-called contin-

gency tables: for any given bipartite graph between prod-

ucts and consumers and any two products i and j, their

contingency table presents how often both products are

found in a basket (table entry ij), how often either of the

products is in a basket (table entry ij and ij), and how often

none of them is contained in a basket (table entry ij). Of

course, all numbers add up to the number of baskets n. For

the above given family G(n) the expected values of all four

cases can be computed and compared (see Fig. 4).

It can be seen immediately that the two models do not

agree in any of the cases. Furthermore, their asymptotic

behavior for n ? ? is also very different. In the following

we will discuss the asymptotic behavior of leverage and

lift.

5.3 Asymptotic behavior of leverage and lift in G(n)

It is also interesting to look at the asymptotic behavior of

leverage and lift in G(n). Since L = R = 1, 2,…, n allows

for only one graph the co-occurrences between all pairs of

nodes are just caused by the structure of the graph. Thus,

the leverage of these co-occurrences should intuitively

evaluate to 0 and lift should evaluate to 1, at least

asymptotically. We add an index ? to the measures to

indicate the behavior for the asymptotic limit of n ? ?.

We differentiate three cases regarding the degrees deg

(pi) = i and deg(pj) = j of the chosen nodes pi and pj:

1. if i and j are constant, i \ j,

(a) levSIM;1ði; jÞ ¼ i ¼ Oð1Þ 6¼ 0 and

(b) liftSIM;1 ¼ n=j ¼ OðnÞ 6¼ 1.

2. For i, j proportional to n, i.e., i = cn \ j = c0

n, c, c0 B 1:

(a) levSIM;1ði; jÞ ¼ cn� cnc0 ¼ cnð1� c0Þ ¼ O

ðnÞ 6¼ 0 and

(a) (b)

Fig. 4 General description of the expected number of baskets which

contain both products i and j (ij), only product i but not j (ij), only

product j but not i (ij), or neither of them (ij) (In the graph family

G(n) as described in Sect. 5.1 for j [ i). a Shows the results for

FDSM. b Shows the results for SIM
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(b) liftSIM;1ði; jÞ ¼ cn=ðcnc0Þ ¼ 1=c0 ¼ Oð1Þ 6¼ 1.

3. When i is constant and i \ j = cn, c \ 1, then:

(a) levSIM;1ði; jÞ ¼ i� icn=n ¼ ið1� cÞ ¼ Oð1Þ 6¼ 0

and

(b) liftSIM;1ði; jÞ ¼ 1=c ¼ Oð1Þ 6¼ 1.

In summary, we have now stated that SIM can almost

never be used for real data sets. However, sampling from

FDSM is much more involved than computing expected

co-occurrence values in SIM. Since the main problem of

SIM seems to be its wrong estimation of Coocc(R), an

intuitive idea is that, for each pair of products, the two

predictions might only differ by a scalar or by a scalar

factor. This would make it possible to use SIM as an

approximation for the more involved FDSM. Another

intuition is that SIM could be at least used as a lower

bound, since it seems to underestimate the expected co-

occurrence in a random rewiring model in most cases. In

the following we will relate the expected co-occurrences in

SIM and FDSM theoretically and experimentally, and

show that SIM cannot be used as any kind of approxima-

tion in most real-world data sets.

5.4 Analysis of the expected co-occurrence

in FDSM and SIM

A simple observation regards known upper and lower

bounds on the co-occurrence of any two vertices:

Observation 5 For each pair of vertices i, j on the same

side of a bipartite graph, their maximal co-occurrence

is bounded by min{deg(i), deg(j)} and their minimal

co-occurrence is bound by max{0, deg(i) ? deg(j) - n}.

Justification 3 Two articles cannot be bought more often

together than any one of them was bought alone. More-

over, if both articles were bought by n ? x customers in

sum, they must at least be bought together by x of them. Let

now one node i be fixed with degree deg(i). Fig. 5 shows

the lower and upper bounds of the co-occurrence of this

vertex for some vertices with different degrees. Note that

all co-occurrences in the graph family exemplified in Fig. 3

are correctly described by the upper bound.

5.5 Using SIM as a lower bound on FDSM

At first glance it seems that the expected co-occurrence in

FDSM always exceeds the expected co-occurrence in SIM.

But although this is true for most real-world data sets, there

are a few counterexamples: consider a graph where

R contains only vertices with degree 1. Thus, the expected

co-occurrence is 0 for all pairs of vertices on the left. In

SIM, the expected co-occurrence is strictly above 0 for all

pairs. In the extreme, if L contains only two vertices with

degree k each, i.e., m ¼ r ¼ 2k; the expected co-occurrence

of these two vertices is k/2 in SIM and 0 in FDSM.

In the examples seen so far, in a graph G(L, R) with a

smaller number of co-occurrence events Coocc(R) than

predicted by SIM, SIM gave an upper bound on all pair-

wise expected co-occurrences in FDSM. Thus, a straight-

forward question to ask is if CooccSIM [ Cooocc(R)

(CooccSIM \ Cooocc(R)), are all single co-occurrences

overestimated by the simple independence model? I.e., are

the following implications correct?

CooccSIM [ CoooccðRÞ ! E½cooccSIMði; jÞ	
[ E½cooccFDSMði; jÞ	

CooccSIM\CoooccðRÞ ! E½cooccSIMði; jÞ	
\E½cooccFDSMði; jÞ	

for all i; j 2 L

Although intuitive, this is not the case:

Lemma 2 There is a family of graphs in which the co-

occurrence of some pairs of vertices is underestimated by

SIM while that of others is overestimated with respect to

the predictions of FDSM.

Proof Let G be a graph of three vertices on the left side

with degrees deg(1) = n - 1, deg(3) = n - 1, and

deg(2) = n - 2. Let R consist of n - 2 vertices with

degree 3 and two vertices with degree 1 (see Fig. 6). It is

obvious that the n - 2 vertices with degree 3 must be

connected to all vertices in L, and that the two degree 1

deg(i) = 7

deg(i) = 4

1 2 3 4 5 6 8 9 107

1

2

3

4

5

6

7

8

9

10
deg(i) = 10

deg(i) = 2

Fig. 5 Shown are the lower and upper bounds of co-occurrences for a

vertex i with degree 2 (green), 4 (red), 7 (blue), or 10 (ten) in a

bipartite graph in which there are 10 vertices on the other side. The

x-axis denotes the degree of the other vertex j and the lines define the

areas within which the co-occurrence of these two vertices must lie.

The diagonal denotes E [cooccSIM(i, j)]
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vertices are then connected to one of the n - 1 degree

vertices in L. Thus, there are two different feasible graphs

in GðL;RÞ.

SIM predicts a co-occurrence of (n - 1)(n - 2)/

n\n - 2 for vertex pairs A, C and B, C and (n - 1)(n - 1)/

n [ n - 2 for vertex pair A, B. The expected co-occur-

rence in FDSM is n - 2 for all vertex pairs. Thus, some

pairs’ co-occurrence is overestimated and that of some

underestimated in SIM with respect to FDSM. h

Note, however, that both models converge to an

expected co-occurrence of n - 2 in the limit of large n.

5.6 Relationship between FDSM and SIM

The preceding observations and theoretical conclusions

show that SIM is not suitable for degree sequences with a

high variance. We have also shown that it cannot easily

serve as a lower or upper bound on the expected co-

occurrence in FDSM. We could not yet rule out that there

is a simple approximative, linear relation between the two,

i.e., that E [cooccFDSM(pi, pj)]^ k� E [cooccSIM(pi, pj)] for

all pi, pj and some k. In the following we will show

numerically that this is in general not the case.

To understand how E [cooccFDSM(i, j)] differs from E

[cooccSIM(i, j)], we conducted experiments on a series of

bipartite graphs with increasing variance in their degree

sequences. Starting with a graph with 200 vertices on the

left and 100 vertices on the right, we measured the co-

occurrences of the vertices on the left. At the beginning, all

vertices on the left had degree 10, and all vertices on the

right had degree 20, m being 2000. Based on this, we

skewed the degree sequences L, R in the following way:

two vertices on the same side were chosen uniformly at

random (u.a.r.) and the higher degree was incremented

while the lower was decremented by one.5 We performed

this skewing operation for 0, 0.1m, m, and 2m events. This

resulted in four different pairs of L, R, ranging from totally

uniform to strongly skewed sequences. For each of these

pairs of L, R, we computed 50,000 sample graphs from

GðL;RÞ, each one computed by a random walk with

5mlog m = 76005 steps from the preceding one. Then, we

averaged over the observed co-occurrences for all pairs of

vertices on the left. Figure 7 shows the difference between

the average, observed co-occurrence obs [coocc(i, j)] and

E [cooccSIM(i, j)] for some fixed vertices i, i.e., it shows

obs [coocc(i, j)] - E [cooccSIM(i, j)] with fixed i vs j.

Note that obs [coocc(i, j)] is used as an estimate for E

[cooccFDSM(i, j)]. Thus, if E [cooccFDSM(i, j)] and E

[cooccSIM(i, j)] would only differ by a scalar or by a scalar

factor, then obs [coocc(i, j)] - E [cooccSIM(i, j)] should

either be a constant or linear for fixed i and variable j.

The first diagram shows that the observed co-occurrence

for all pairs of vertices is essentially the same. It can be

proven that this is always true, if the nodes on the side of

interest all have the same degree:

Observation 6 If all vertices in L have the same degree

x, the expected co-occurrence of any two vertices i, j [ L is

E½cooccFDSMði; jÞ	 ¼ CooccðRÞ= l
2

� �
.

Proof The first observation is that all pairs of vertices

must have the same expected co-occurrence. This is

because for each graph in which some pair i, j co-occurs

more often than another pair i0, j0, there is an isomorphic

graph G0 in which i and i0 and j and j0 have switched their

whole neighborhood. This defines a bijective mapping and

thus for each graph in which coocc(i, j) - coocc(i0, j0) = x

there is another graph with coocc(i, j) - coocc(i0, j0) =

- x. There are l
2

� �
different pairs of vertices in L 9 L. The

sum of their expected co-occurrences must equal Coocc(R)

by Lemma 3. It follows that E½cooccFDSMði; jÞ	 ¼
CooccðRÞ= l

2

� �
.

After the first 0.1m = 200 skewing events, SIM over-

estimates the expected co-occurrence in FDSM for the

exemplary vertices. And indeed, the real total number of

co-occurrences is Coocc(R) = 9,475, while SIM expects a

total number of 19,797.6 co-occurrence events. After 2,000

skewing events, SIM starts to underestimate each single co-

occurrence in FDSM. Most important to note is that the

difference is largest for medium degrees, and the maximal

difference seems to shift with increasing degree of x. It is

easy to see that the expected co-occurrences in the two

models are neither proportional to each other, nor do they

have a constant difference. This implies directly that all

Fig. 6 The grey vertices on the left side have degree n - 1, the

middle one has degree n - 2. On the right-hand side, there are n - 2

vertices with degree 3 (striped). These are thus connected to all

vertices on the left. The remaining two white vertices are connected to

one of the grey vertices each

5 As long as this does not lead to degree 0 or degree r ? 1 (l ? 1) in

which case nothing is done.
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rankings of interestingness measures that are based on SIM

need to be recomputed if the data set at hand is skewed

enough. This has very important consequences, not only for

the expected co-occurrence itself and thus also the support

(Agrawal et al. 1993), leverage (Piatetsky-Shapiro 1991),

or lift but also for other interestingness measures that

implicitly rely on it, e.g., the conviction (Brin et al. 1997).

In essence, all of the above observations show that the

co-occurrence of two events is simply not independent of

the degree distribution on the right-hand side. The main

point is that if A and B are bought together by some cus-

tomer, and B and C as well, so are A and B. If furthermore

there are customers that buy very many products, then

there can be non-related items that are still bought together

more often than expected in SIM. Our conclusion is that

the first requirement of Piatetsky-Shapiro needs to be

changed to

1. An interestingness measure F(X,Y) = 0 (or 1) if P(X)

and P(Y) are conditionally independent given R and—

if necessary—conditioned on other structural features

of G as well.

This observation requires a generalized leverage and lift

that replaces the expected co-occurrence term in SIM by

that of FDSM or any other suitable corresponding random

graph model. In the following, we will concentrate our

discussions on FDSM. It is obvious that the new leverage

leverageFDSM and liftFDSM fulfill the second requirement of

Piatetsky and Shapiro, namely that the measures increase

with increasing P(XY) with fixed P(X) and P(Y). We will

now show that also the third requirement is fulfilled.

5.7 Monotonicity of FDSM

The next theorem shows that the expected co-occurrence is

monotonic in the FDSM, i.e., E [cooccFDSM(X, Y)]

increases monotonically with P(X) (or P(Y)) when P(XY)

and P(Y) (or P(X)) remain the same—thus leverageFDSM

and liftFDSM decrease monotonically.

Theorem 2 Monotonicity

The expected co-occurrenceE [cooccFDSM(x, y)] is

monotonic:E [cooccFDSM(x, y)] C E [cooccFDSM(v, w)] if

deg(x) C deg(v) and deg(y) C deg(w).

Proof The proof proceeds as follows: we first claim that

E½cooccFDSMðx; zÞ	 �E½cooccFDSMðy; zÞ	 if degðxÞ� degðyÞ:

Then, we conclude that if deg(x) C deg(v) and deg(y) C

deg(z), then E [cooccFDSM(x, y)] C E [cooccFDSM(v, y)] C E

[cooccFDSM(v, w)] since the expected co-occurrence is a

symmetric function.

To prove the claim, GðL;RÞ is partitioned into different

subsets of graphs GN0,M0(L, R). For each subset we show that

the co-occurrence is strictly monotonic and thus the theorem

is true for the whole set. Let now G be any graph in GðL;RÞ;
and denote by NGðx; yÞ the set of all neighbors of x not shared
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Fig. 7 Difference between the

observed average co-occurrence

sampled from GðL;RÞ and

E[cooccSIM(i, j)] for four

randomly chosen vertices i vs.

all other vertices j. a Shows

results for a bipartite graph with

uniform degree sequences, b, c
and d show results for bipartite

graphs with increasingly

skewed degree sequences as

described in the text
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by y in G. Then, we define N 0 ¼ NGðx; yÞ [ NGðy; xÞ; i.e., the

symmetric difference of the sets of neighbors of x and y. Let

M0 denote the set of all edges minus the edges between x or y

and a vertex from N0. The subset GN 0;M0 ðL;RÞ � GðL;RÞ is

then defined as the set of all feasible graphs with fixed edge set

M0. It is clear that this defines a valid partition since all graphs

inGðL;RÞ are assigned to one subset and no graph is assigned

to more than one subset. We are now interested in the sum of

the co-occurrence of x and y with z within one given subset

GN0;M0 ðL;RÞ.
If z is not connected to any vertex in N0, then coo-

cc(x, z) = coocc(y, z) in all graphs in GN 0;M0 ðL;RÞ. Let now

G be a graph with cooccG(x, z) \ cooccG(y, z) and observe

the subset GN 0;M0 ðL;RÞ induced by G. Since all edges from

M0 are fixed, we facilitate the argumentation by using a set

of graphs G0 consisting of only the vertices x, y, z and those

from N0, and the edges E - M0 between them. In the

restricted graphs G0, we will identify x, y, and z with their

degrees w.r.t. N0, i.e., |N0| = x ? y. Note that each of the

xþy
x

� �
¼ xþy

y

� �
possible graphs is feasible, i.e., x can freely

choose its neighbors in N0 and y is then connected to the

remaining vertices. We will now observe the sum of co-

occurrences between x, z and y, z in GN0
G
;M0

G
ðL;RÞ from the

perspective of x. Given x, y and z, and some feasible co-

occurrence q B min{y, z} of y and z, the number of graphs

NG(coocc(y, z) = q) in GN0
G
;M0

G
ðL;RÞ with this co-occur-

rence is exactly given by z
q

� �
xþy�z

y�q

� �
; and analogously the

same is true for feasible co-occurrences between x and z.

Of course, if y co-occurs q times with z, then x co-occurs

z - q times with z. For q B b z/2c, the claim thus follows

trivially as the co-occurrence of x and z is at least as large

as the co-occurrence of y and z in this case. Consider now

the case q [ z/2. We claim that NG(coocc(x, z)) C

NG(coocc(y, z)), i.e. z
q

� �
xþy�z

x�q

� �
� z

q

� �
xþy�z

y�q

� �
. Remem-

ber that x C y. Then the claim is true since

xþ y� z

x� q

� �
[

xþ y� z

y� q

� �
, ðxþ y� zÞ!
ðx� qÞ!ðyþ q� zÞ!

[
ðxþ y� zÞ!

ðy� qÞ!ðxþ q� zÞ! ð33Þ

, ðy� qÞ!ðxþ q� zÞ!
ðx� qÞ!ðyþ q� zÞ! [ 1 ð34Þ

,
Pxþq�z

i¼yþq�zþ1i

Px�q
j¼y�qþ1j

[ 1: ð35Þ

The last inequality is true since both products contain the

same number x - y - 1 of factors, and since q - z \ z/

2 \ q, the ith factor in the nominator is larger than the ith

factor in the denominator, which completes the proof. h

With this last piece of information we can now propose

new interestingness measures based on FDSM.

5.8 Generalizing leverage and lift

Here, we propose to generalize leverage and lift to evaluate

the difference or ratio of the observed and the expected co-

occurrence under any suitable corresponding random graph

model. As we discuss later (see Sect. 7) there are even

more involved random graph models than FDSM to con-

sider. Of course, for any of them the monotonicity criterion

would still have to be shown. For the rest of this article we

will use the FDSM and denote the new leverage by

leverageFDSM and lift by liftFDSM:

leverageFDSM ¼ cooccðx; yÞ � E½cooccFDSMðx; yÞ	 ð36Þ
liftFDSM ¼ cooccðx; yÞ=E½cooccFDSMðx; yÞ	: ð37Þ

Note that in contrast to SIM and E [cooccSIM(x, y)], there

is no known closed formula for E [cooccFDSM(x, y)]. Fur-

thermore, the set GðL;RÞ will in most cases be by far too

large to enumerate. Thus, E [cooccFDSM(x, y)] cannot be

computed but needs to be estimated by computing the

average co-occurrence of all pairs of vertices in a large

enough sample from GðL;RÞ. We will now discuss algo-

rithmic aspects and experimental results using the new

interestingness measure leverageFDSM.

6 Experimental results

The proposed modified leverage leverageFDSM(v, w) basi-

cally defines a similarity measure, i.e., it assigns a real

number to all pairs of nodes such that the more significant

neighbors they have, the higher the number. We can now

build two lists: A global list LG containing triples of two

products and their leverage can be built, sorted by the

latter, or local lists L(v) for each node, containing all other

products and their leverage to it, sorted by the latter. As

with other similarity data, these lists can be used to turn the

data into a sparse graph in many ways. E.g., the graph can

be created from the best O(n) triples from the global list LG

or by connecting each node v to the nodes from the k

highest-valued pairs in its local list L(v). Note that these

edges are directed in the sense that v might find that w

belongs to its k closest neighbors but not vice versa. By

definition, both methods produce a sparse one-mode pro-

jection from any given data set. But of course the quality of

this projection depends heavily on the quality of the sim-

ilarity measure, the modified leverage leverageFDSM. In the

following we will describe how the quality of such a

similarity measure can be assessed in general, and apply

the methods to the modified leverage measure in particular.
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6.1 Quality assessment

The main idea of our one-mode projection procedure is to

create a sparse graph from a bipartite graph that can then be

clustered by any reasonable clustering algorithm. In order

to make the projection useful for clustering, most nodes

(representing one object from the data set) should only be

connected to nodes which represent similar objects. The

proposed modified leverage assumes that the co-occurrence

of two objects not only tells us about which products will

be co-bought together or which authors are most likely to

produce another article together, but also whether the

products are similar by some intuitive measure and whether

the authors of an article share some scientific interest. We

conjecture that the modified leverage not only reliably

picks the objects that co-occur significantly often in a

stable and reliable way, but also that if we connect each

object to the objects with which it most significantly co-

occurs, these objects are also similar by content.

A general problem in the judgment of such a conjecture

is that we seldom have something like a ground truth with

which we can compare our results. Luckily, the Netflix

prize data set (http://www.netflixprize.com) provides at

least some possibilities to check the validity of the method.

The data set consists of 100 million customer ratings of

17,770 films, between the 31st of December, 1999, and the

31st of December, 2005. There are over 480,000 distinct

customers, identified by an ID between 1 and 2,600,000.

The degree sequences of customers and films are both

highly skewed as already seen in Fig. 1. For each rating

event, the customer ID, the film ID, and the rating from 1 to

5 (‘very bad’ to ‘very good’) are presented. Additionally, a

second file assigns to each film ID the film’s title and its

publishing year. The data allow for different quality

assessment techniques:

1. Since the data set is so large, it can be partitioned

randomly into smaller data sets and if the method is

stable, all of the data sets should give rise to very

similar rankings in LG and L(v).

2. We expect that rankings of high-degree nodes should

be even more stable than those of low-degree nodes.

3. For films that are part of a series we expect that their

best ranked neighbors are other parts in the same series

and that all parts of the series are among the best

ranked neighbors.

To analyze the stability of the given rankings, we used

smaller samples from the data set. We computed 20 data

samples DS1 to DS20, composed of all ratings of 10,000

users, each. The first data set contains the ratings of the

10,000 users with lowest IDs, the second all ratings of the

next 10,000 users, and so on. For each sample, we com-

puted the 1,000 pairs of films with globally highest

leverage in a list, denoted by LG(DSi). Since the leverage

favors films with a high degree, we also computed for

every data sample DSi and every film v a local list L(DSi, v)

containing its up to 100 best neighbors w sorted by their

modified leverage leverageFDSM(v, w).

In the following, we will discuss some algorithmic

aspects.

6.2 Algorithmic aspects

The procedure to compute leverageSIM for all pairs of

nodes of a given side in a bipartite graph is very simple:

Given G = (U [ P, E) and being interested in the lever-

ageSIM values between the vertices in P, it is first necessary

to compute the observed co-occurrence. For this, we ini-

tiate an array Coocc of sizejPj � jPj and iterate over all

nodes ui in U. For each pair of neighbors px, py of ui, we

increase the according value Coocc½x	½y	 by one. After

iterating over all vertices ui;Coocc½x	½y	 contains coo-

cc(px, py), as shown in Sect. 5.1. The runtime is obviously

in O(Coocc(G) ? |P|2). For any sample with 20,000 users

the empirical runtime of computing the co-occurrences of

all pairs of vertices in P is 4.2 s ± 0.2 on an AMD

AthlonTM X2 Dual Core QL-65 with 2.1 GHz (only one

processor was used). As a side effect, the degree of each

vertex in P can be computed along with the former com-

putation, and with this, leverageSIM can afterwards be

computed in O(n2).

Since there does not seem to be any closed formula for

E [coooccFDSM(px, py)], it is necessary to sample from the

according GðL;RÞ; where L and R are determined by the

degree sequences of vertices in U and P. We have

implemented the simple Markov chain algorithm descri-

bed by Gionis et al. (2007), in which at every time step a

pair of edges e1 = (v,w) and e2 = (x,y) is drawn uni-

formly at random. If neither (v, y) nor (x, w) is in E, e1

and e2 are removed from E and (v, y) and (x, w) are added

to E; this is called an edge swap. This process is repeated

long enough to allow for mixing, that is, long enough such

that the resulting graph G0 is independent from the starting

point G; in our experiments, we set the number of

swapping steps to 70,000. The result of the first random

walk was used as a starting point for the next random

walk, and so forth. The theoretical runtime is directly

proportional to the number of attempted swaps; the

empirical runtime on the same machine as described

above was 820 ms ± 40. For each of the 5,000 graphs

that we sampled, we computed the co-occurrence for all

pairs of vertices in U, with again an empirical runtime of

4.2 s ± 0.18. It thus becomes clear that the sampling from

GðL;RÞ itself is not the bottleneck, but rather the com-

putation of the co-occurrences in each of the samples. In

sum, computing one sample and the co-occurrence of all
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pairs of vertices in it took around 5 s, and for all 5,000

samples it took roughly 7 h per data set.

If the leverage of any two films v, w is negative, this

implies that they co-occur less often than expected, so we

disregard neighbors with a negative leverage. Both,

LG(DSi) and L(DSi, v) give rankings. To compare rankings

between different data samples, one can compute the per-

centage of objects that are listed in both rankings. To,

moreover quantify the order in which the commonly listed

objects are given, a rank correlation coefficient like Ken-

dall’s s is needed, which will be described in the following.

6.3 Validating the ranking of a given similarity

measure

To assess the stability of rankings given by some similarity

measure like the leverage, Kendall’s s is a useful rank

correlation coefficient (Kendall 1938). An easier formula-

tion was given by Abdi (2007) on which we rely here. In its

basic form it quantifies the correlation between two rank-

ings on the same set of n objects, denoted by numbers of 1

to n. Given one ranking, which is w.l.o.g. represented by

the sequence 1, 2, 3,…, n, the second ranking is then a

simple permutation of these numbers. We will denote this

second ranking by a function PðyÞ that gives the value on

the y-th place in the second ranking. Vice versa, p(x)

denotes which place the x-th element of the first ranking

has in the second ranking. E.g., let alon (2006), Admiraal

and Handcock (2008), Agrawal et al. (1993), Abdi (2007);

http://www.ninasnet.de/projects/omp_recommendations/

10bestrecommendations.html) be the second ranking, then

Pð1Þ ¼ 5;Pð2Þ ¼ 3;Pð3Þ ¼ 4;Pð4Þ ¼ 2;Pð5Þ ¼ 1 and

p(1) = 5, p(2) = 4, p(3) = 2, p(4) = 3, and p(5) = 1.

To quantify the correlation between the two rankings, all

ordered pairs of numbers in the second ranking are

observed, i.e., (5, 3), (5, 4), (5, 2), (5, 1), (3, 4), (3, 2),

(3, 1), (4, 2), (4, 1), and (2,1). A higher number followed

by a smaller means that the respective objects had a dif-

ferent order in the first ranking. A pair (x, y) with x [ y is

called a discordant pair, and the number of discordant pair

of a ranking P is denoted by DðPÞ. Kendall’s’ s is then

defined as 1� ð4 � DðPÞ=ðnðn� 1ÞÞ where n is the length

of the ranking. It takes on values in [- 1, 1], where the

extremes result for a reversed ranking (s = - 1) and the

same ranking (s = 1). For the above given example,

Kendall’s s is thus 1 - 18/10 = - 0.8. Note that a slight

change in the definition to r ¼ 1� 2 � DðPÞ=ðnðn� 1ÞÞ
equals the probability that any two pair of objects drawn

u.a.r. have the same ordering in both rankings.

The main problem in computing Kendall’s s and its

close cousin r is to determine DðPÞ. A naive implemen-

tation to compute DðPÞ has a runtime of O(n2) by checking

every single pair. An improved algorithm with runtime

O(n log n) was given by Newson (2006). However, in this

special setting we expect the number of discordant pairs to

be rather low. We will show that in this case, there is a

more efficient algorithm to compute Kendall’s s that has

a runtime of Oðnþ DðPÞÞ, i.e., it is linear in the size of

the ranking and bounded by above from the number of

discordant pairs in the given permutation P.

The algorithm walks through the second ranking P and

keeps two lists: After processing the i-th rank, Bigger

contains all values PðiÞ[ i; i.e., those values in the rank

that came earlier than in the first ranking, and Smaller

contains all values i with p(i) \ i, i.e., those values that are

still missing. The values in Bigger have the same order as

in P and the values in Smaller are sorted in increasing

order. With the help of these two lists, we count the number

of discordant pairs. In essence, all elements in Bigger make

for one discordant pair with each of the elements in

Smaller. The algorithm guarantees that after the i-th rank is

processed, all discordant pairs with (x, y) are accounted for,

where y B i and PðxÞ\i.

Three cases have to be differentiated: if the current

value in PðiÞ is equal to i, there is one discordant pair for

each value x [ Bigger and i, and one for i and all elements

in Smaller. If PðiÞ 6¼ i; we have to differentiate whether i

has already been seen. If not, we add i to Smaller, because

it is still missing, and thus, it produces a discordant pair

with all elements in Bigger. If now PðiÞ[ i; all pairs

ðPðiÞ; yÞ with y [ Smaller are discordant. The element

itself must be added to Bigger and it must be marked that

the element has been seen before. If PðiÞ\i;PðiÞ must be

an element of Smaller. Let Smaller = [1, 4, 5, 7], and 4

the element at place i. Since 4 is placed at i, 4 will make a

discordant pair with all elements in Smaller that are smaller

than itself. Since Smaller is sorted increasingly, we can just

walk through this list until we meet the respective element

(in this case 4), remove it from Smaller because it is not

missing anymore, and add one discordant pair for each

element traversed so far. The last step that has to be done if

P 6¼ i; is to check whether i has been seen before. In that

case, i is element of Bigger and needs to be removed. Since

all elements in Bigger besides the element itself are at that

time point larger than i and since the elements of Bigger

have the same order as in P;PðiÞ makes for a discordant

pair with all elements in Bigger up until its own position in

the list.

The runtime is in XðnÞ because each position is evalu-

ated once. Whenever an element needs to be removed from

Bigger or Smaller, the whole list might have to be

traversed. Since every traversal in these lists stands for

one discordant pair, the total runtime is bounded by

Oðnþ DðPÞÞ. In the worst case, i.e., a reverted ranking

P ¼ n; . . .; 3; 2; 1½ 	; the runtime is in O(n2). With this rank

correlation coefficient, the different global and local

A systematic approach to the one-mode projection of bipartite graphs 201

123

http://www.ninasnet.de/projects/omp_recommendations/10bestrecommendations.html
http://www.ninasnet.de/projects/omp_recommendations/10bestrecommendations.html


rankings in the 20 data samples created from the Netflix

data set can now be assessed.

In the following we will first describe experimental

results on the stability of the specific global and local

rankings in the 20 data samples. After that we will define a

subset of films where the best recommendations are known

and quantify how well the method agrees with them.

6.4 Global rankings

For each of the 20 data samples DSi we computed the

1,000 pairs of films v, w with highest leverage. Note that

out of the possibly more than 157,000,000 distinct pairs of

films, the best ranked 1,000 films are less than 0.0007%.

Already a very simple quality measure, which counts the

number of common pairs of films for all data sets, reveals

that the global rankings show a high overlap: restricted to

the 10 highest-ranked pairs, all 20 (!) data samples list

exactly the same pairs of films. These 10 pairs of films are

displayed in Table 1.6 Interestingly, these pairs give rise

to three distinct 3-cliques and one single pair of films, and

all films in the same component are obviously highly

related: All Lord-of-the-Rings sequels are connected to

each other, once in the normal cut and once in the

extended version—but there is not yet a connection

between the two components. Similarly, Star Wars Epi-

sode IV to VI are all pairwise related and thus build a

triangle. The last pair makes a connection between both

volumes of Kill Bill.

If more than the first 10 rankings are considered, the

percentage of common pairs drops, as depicted in Fig. 8.

But interestingly, the percentage of pairwise common pairs

of films listed under the first k rankings seems to stabilize

around 85%. As sketched above, this percentage is con-

siderable compared with the enormous number of possible

pairs of films in the data set. If we compute for each k the

pairs of films that are listed under the k highest-ranked

pairs in all 20 data samples (maximal consensus), this

percentage seems to stabilize around 57.5%. I.e., given any

k B 1,000, all data samples agree on around 57% pairs of

films.

In the following, we restrict the rankings in each data set

to the consensus pairs for a given k and compute Kendall’s

s and r. W.l.o.g., we set the ranking of the consensus pairs

in the first data sample as reference and compare the

rankings of all other data samples against it. Figure 9a

shows that for the 10 highest ranked pairs (on which all

data samples agree), Kendall’s s is on average 0.90, i.e., on

average there are only 2 or 3 discordant pairs. Again, for

higher k s drops but seems to stabilize around 0.69. Note

that the expected Kendall’s s is approximately normally

distributed around 0 with a variance of rs
2 = 2(2N ? 5)/

(9*N*(N - 1)), with a satisfactory approximation for

N [ 10 (Abdi 2007). s’s significance can thus be tested by

computing Zs = s/rs, which denotes how many standard

Table 1 Pairs of films with the 10 highest leverageFDSM values in all 20 data samples

Lord of the Rings: The Two Towers ? Lord of the Rings: The Fellowship of the Ring

Lord of the Rings: The Return of the King ? Lord of the Rings: The Two Towers

Lord of the Rings: The Return of the King ? Lord of the Rings: The Fellowship of the Ring

Lord of the Rings: The Fellowship of the Ring (Ext. Ed.) ? Lord of the Rings: The Two Towers (Ext. Ed.)

Lord of the Rings: The Return of the King (Ext. Ed.) ? Lord of the Rings: The Two Towers (Ext. Ed.)

Lord of the Rings: The Return of the King (Ext. Ed.) ? Lord of the Rings: The Fellowship of the Ring (Ext. Ed.)

Star Wars: Episode VI: Return of the Jedi ? Star Wars: Episode V: The Empire Strikes Back

Star Wars: Episode IV: A New Hope ? Star Wars: Episode V: The Empire Strikes Back

Star Wars: Episode IV: A New Hope ? Star Wars: Episode VI: Return of the Jedi

Kill Bill: Vol. 1 ? Kill Bill: Vol. 2

The leverageFDSM of all pairs is at least 725 in all data samples (� [2010] IEEE. From Zweig 2010, reprinted with permission)
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Fig. 8 Average percentage of pairwise shared pairs of films in

GL(DSi) and GL(DSj), restricted to the first k rankings in all 20 data

samples, and percentage of pairs of films listed under the first

k rankings in all 20 data samples (maximal consensus). (� [2010]

IEEE. Figure from Zweig 2010, reprinted with permission)

6 Note that the order was chosen for displaying reasons—none of the

data samples directly showed them in this order.
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deviations the given s value is away from the mean.

Computing Zs for the average s-values reveals that Zs

increases from 4.4 for k = 20 to 24.5 (k = 1,000) and is

thus highly significant (see Fig. 9b).

6.5 Local ranking

The last section showed strong evidence that the globally

best pairs can reliably be found in quite small data samples

of 10,000 users each. But of course, we are also interested

in whether the method picks reliable recommendations for

each single film. In the following we will show that the

method can detect those objects of the data set for which

the statistics is too poor to give any kind of recommen-

dation. We think that this is a major advantage of the

method, since giving no recommendation might be better

than giving some random recommendation. For all other

objects, the local rankings are similarly stable and reliable

as the global ranking.

To assess the question for the validity of local rankings,

we computed for each film v in each of the 20 data sets up

to 100 other films w with highest leverageFDSM(v, w). We

restrict them to those w with leverageFDSM(v, w) [ 10, i.e.,

we require that at least 10 more customers than expected

rented these two films together. Let lev10(v) denote the set

of other films w with leverageFDSM(v,w) [ 10 in the given

data set. For data sample 1, only 6931 out of 17770 films v

have at least one neighbor in lev10(v). Then, analogously to

the global rankings, we computed for each film v the

consensus set of recommendations for all 20 data sets. If

the consensus set |cons(v)| [ 2, we computed the average

Kendall’s s of all other data samples with respect to the

ranking of data sample 1. In summary, for each film v in

data set 1 we know how many customers rated it, i.e., its

degree deg(v), the maximal leverageFDSM levmax(v) it has

with any other film w, the number of neighbors w with at

least leverageFDSM(v,w) [ 10 (considering only the 100

highest values, denoted by |lev10(v)|), the number of

neighbors ranked by all data sets |cons(v)|, the average of

Kendall’s s for the first ranking of the consensus set against

all other 19 rankings, and the significance Zs of this value.

The first and rather intuitive result is that there is a positive

correlation between the degree deg(v) of a film v and its

number of significant neighbors |lev10(v)| (see Fig. 10a). But

especially among the low degree films, there are some with

absolutely the same degree but very different numbers of

significant neighbors: The films ‘‘Never Die Alone’’ and

‘‘Aqua Teen Hunger Force: Season 2’’ have both been rated

118 times, but the first has only 6 significant neighbors of

which none is in the consensus set for all 20 data samples.

The latter has 90 significant neighbors of which 33 are in the

consensus set. Moreover, the rank correlation of these 33

consenting neighbors is more than significant with an aver-

age value of Kendall’s s = 60.84 and Z = 5.06, i.e., the

order in which these consenting films are given is signifi-

cantly the same. This indicates that the leverageFDSM of two

films, if it is significant, is a reliable measure that will identify

the same significant neighbors in different data sets.

The diagrams show in general that a small leverageFDSM

value is correlated with a low number of consensus

neighbors. Thus, a low maximal leverageFDSM levmax(v)

indicates that the data sample is not good enough to make

any statistically valid recommendations for film v, because

the given recommendations strongly depend on the given

data sample. Figure 10c, d finally shows that for all films

whose maximal leverageFDSM is at least 100, the consensus

set almost always has at least 10 members and that the

average ranking correlation coefficient is highly significant

for them. This last bit of evidence shows that the proposed

method enables the network analyst to assess whether the

data sample at hand is good enough to give recommenda-

tions for any single object and second to give statistically

reliable recommendations for those objects that have sig-

nificant neighbors. Thus, any reasonable method that uses
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Fig. 9 Assessment of global rank correlation. a Average rank

correlation (Kendall’s s) between first data sample and all other data

samples with respect to the k first rankings. b Zs as defined in the text

(� [2010] IEEE. Figure from Zweig 2010, reprinted with permission)
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the modified leverageFDSM to build a one-mode projection

of the bipartite graph will reliably connect those objects

that are significantly co-occurring together. In the next

section we will show for one subset of films that the

method not only identifies objects that co-occur together

significantly often but that these objects also have an

objective similarity in the given Netflix data set.

6.6 Comparison of old and new leverage

As we have shown above, the old leverage definition

(leverageSIM) suffered in most cases from extracting too

many false positive rules. Table 2 shows all films in one of

the datasets of 10,000 users which were rated by at least

3,000 users. The films show a wide range of genres, from

melodrama to action, fantasy and animation, to documen-

taries, and romantic comedies. We grouped the films by

hand, where, e.g., films 17–22 are typical romantic come-

dies, and films 36–43 are typical action films. It is rather

intuitive that films within these groups should be co-rated

significantly more often while films from one category are

not expected to be significantly often co-rated with films

from the other category. Broadly, we expect positive

leverageFDSM values within the group and negative values

between them. However, the classic leverage leverageSIM

fails to indicate this (see Fig. 11). Since leverage values

vary over a large scale, we plotted logarithmic values

of the leverage. To deal with negative values, we plot

-log(- leverageX) with X = FDSM or X = SIM. Nega-

tive values are encoded in red colors, positive values in

blue. The classical leverage leverageSIM indicates that all

of the films are significantly often co-rated, against the

intuition. The new leverage leverageFDSM shows the full

range of values: within the manually clustered groups the

values are pairwise positive, while they are negative

between most groups. There are some interesting results:

‘Sister Act’ goes quite well with the action film block,

while ‘Pirates of the Caribbean’ rather behaves like one of

the romantic comedies and not as a typical action film. And

although the block from 6-16 shows films which are often

co-rated in a quite coherent way, there are two exceptions:

‘American Beauty’ and ‘Shrek’, and ‘Shrek’ and ‘Pulp

Fiction’. It is immediately obvious that ‘Shrek’ as a typical

family movie might not share too much of an audience with

the other two, while ‘American Beauty’ and ‘Pulp Fiction’

are liked by the same audience. This comparison already

gives a good intuition about the new leverage. However,

although the presented results are intuitive, it is hard to

assess their absolute quality. In the following we will show

results on a different subset, in which the quality of the

given recommendations can be immediately assessed.

6.7 Benchmarking the quality

We have now shown that the method delivers very stable

results, i.e., for all films v for which the data set contains
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Fig. 10 Assessment of local

ranking correlations.

a Scatterplot of degree deg(v)

and number of significant

neighbors |lev10(v)|.

b Scatterplot of levmax(v) and

|lev10(v)| restricted to

levmaxðvÞ 2 ½0 : 100	.
c Scatterplot of levmax(v) and

|cons(v)|. d Scatterplot of

levmax(v) and Ztau restricted to

levmax(v) [ 100 (� [2010]

IEEE. Figure from Zweig 2010,

reprinted with permission)
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enough information, the method reliably assigns the same

films w as most significant neighbors in all 20 data set

samples. Moreover, it lists them in nearly the same order.

But this does not yet imply that the most significant

neighbors are also those films that are most similar with

respect to the content. Of course, the latter is a necessary

requirement to cluster the graph resulting from the one-

mode projection. On the other hand, this aspect is in

Table 2 Most popular films in

a dataset comprising the ratings

of 10,000 users, manually

reordered and grouped. The

numbers give the order in which

the films are shown in the film-

film-leverageFDSM-matrix in

Fig. 11 (from left to right and

bottom to top)

Number Title Netflix ID Number of users

that rated this film

1 The Royal Tenenbaums 8782 3,059

2 Lost in Translation 12232 3,152

3 National Treasure 17169 3,025

4 Troy 13081 3,020

5 I 5496 3,252

6 American Beauty 571 3,247

7 The Matrix 14691 3,017

8 Lord of the Rings: The Fellowship of the Ring 2452 3,145

9 Lord of the Rings: The Two Towers 11521 3,132

10 Shrek 2 3938 3,158

11 The Bourne Identity 6037 3,366

12 Bruce Almighty 3860 3,365

13 The Italian Job 4432 3,292

14 Pulp Fiction 11064 3,262

15 Ocean’s Eleven 15107 3,414

16 Pirates of the Caribbean: 1905 4,068

The Curse of the Black Pearl

17 50 First Dates 1962 3,012

18 Sister Act 6386 3,037

19 Two Weeks Notice 13050 3,115

20 How to Lose a Guy in 10 Days 14538 3,226

21 Sweet Home Alabama 15582 3,725

22 Dirty Dancing 7617 3,012

23 Gone in 60 Seconds 4996 3,125

24 Double Jeopardy 12911 3,149

25 The Day After Tomorrow 15205 4,036

26 Titanic 16879 3,042

27 Forrest Gump 11283 3,785

28 The Sixth Sense 4306 3,221

29 Gladiator 13728 3,132

30 Independence Day 15124 4,576

31 The Green Mile 16377 3,761

32 Top Gun 7624 3,211

33 What Women Want 2152 3,413

34 Miss Congeniality 5317 4,907

35 Pretty Woman 6287 4,034

36 Men of Honor 7234 3,160

37 Lethal Weapon 4 14367 3,234

38 Pearl Harbor 9340 3,624

39 The Rock 12317 3,461

40 Twister 12470 3,725

41 Con Air 16242 3,715

42 Armageddon 6972 3,628

43 The Patriot 14313 4,198
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Fig. 11 Pairwise leverageSIM (lower-right triangle) and levera-
geFDSM (upper-left triangle) between all films that were rated at least

3,000 times in a set of 10,000 users. Plotted is log(leverageX)

(X = FDSM/SIM) if leverageX [ 0, and -log(- leverageX) if

leverageX \ 0. Films are assigned to columns from left to right,
and to rows from bottom to top (see Table 2)

Table 3 Average quality assessment for recommendations of all

sequels in a given series S sorted by leverageSIM as described in the

text with respect to the first data sample (first 20,000 subsequent user

IDs)

Title of series S n pbr pra first last

Northern Exposure 3 33.33 33.33 1.00 3.00

Seinfeld 3 33.33 0.00 – –

Trailer Park Boys 3 0.00 0.00 – –

Ren & Stimpy 3 0.00 0.00 – –

Strangers with Candy 3 0.00 100.00 20.33 34.00

Survivor 3 0.00 0.00 – –

The Dead Zone 3 0.00 33.33 33.00 72.00

The Jamie Kennedy Experiment 3 0.00 0.00 – –

Roswell 3 33.33 33.33 5.00 23.00

Russell Simmons Presents Def

Poetry

3 0.00 0.00 – –

The Osbournes 3 0.00 33.33 2.00 12.00

The Shield 3 100.00 100.00 1.00 19.00

Sealab 2021 3 66.67 33.33 1.00 16.00

Silk Stalkings 3 33.33 33.33 1.00 6.00

SpongeBob SquarePants 3 0.00 0.00 – –

Star Trek: Enterprise 3 0.00 33.33 17.00 64.00

24 3 100.00 100.00 1.00 15.33

Beast Wars Transformers 3 66.67 100.00 1.33 4.67

Boy Meets World 3 0.00 0.00 – –

Cold Feet 3 33.33 33.33 1.00 2.00

ER 3 0.00 33.33 52.00 66.00

La Femme Nikita 3 33.33 33.33 14.00 15.00

Millennium 3 0.00 0.00 – –

Table 3 continued

Title of series S n pbr pra first last

Monk 3 66.67 66.67 1.00 13.50

Yu-Gi-Oh! 3 0.00 33.33 2.00 11.00

In Living Color 4 0.00 25.00 14.00 35.00

Six Feet Under 4 75.00 50.00 1.00 12.00

Smallville 4 75.00 25.00 1.00 7.00

Profiler 4 50.00 25.00 1.00 20.00

Queer as Folk 4 100.00 75.00 1.00 35.67

Law & Order 4 25.00 50.00 21.50 79.50

Mr. Show 4 0.00 50.00 24.00 73.00

Alias 4 75.00 25.00 1.00 3.00

CSI 4 75.00 100.00 1.50 14.50

The West Wing 4 75.00 75.00 1.00 30.67

Will & Grace 4 0.00 25.00 8.00 95.00

Coupling 4 75.00 75.00 1.00 52.67

Curb Your Enthusiasm 4 50.00 25.00 1.00 45.00

Everybody Loves Raymond 4 0.00 0.00 – –

The King of Queens 4 25.00 25.00 13.00 45.00

The Man Show 4 0.00 0.00 – –

Farscape 4 50.00 75.00 3.33 23.33

Felicity 4 50.00 75.00 1.33 44.00

The Best of Friends 4 75.00 100.00 1.75 19.50

Gilmore Girls 4 75.00 25.00 1.00 12.00

King of the Hill 4 0.00 0.00 – –

Andromeda 5 0.00 0.00 – –

Oz 5 80.00 20.00 1.00 4.00

Angel 5 80.00 100.00 1.60 32.20

Babylon 5 5 80.00 100.00 2.00 19.40

Dawson’s Creek 5 60.00 20.00 1.00 30.00

The Sopranos 5 100.00 40.00 1.00 34.00

Saved by the Bell: The New Class 5 20.00 0.00 – –

A Touch of Frost 6 50.00 0.00 – –

Dr. Quinn. Medicine Woman 6 0.00 16.67 26.00 60.00

Frasier 6 0.00 0.00 – –

Hercules: The Legendary Journeys 6 0.00 0.00 – –

Highlander 6 16.67 33.33 4.00 79.50

Homicide: Life on the Street 6 66.67 16.67 1.00 7.00

South Park 6 50.00 16.67 1.00 40.00

The Simpsons 6 66.67 16.67 1.00 47.00

Xena: Warrior Princess 6 0.00 33.33 5.50 73.00

Star Trek: Deep Space Nine 7 14.29 100.00 3.71 39.14

Star Trek: The Next Generation 7 28.57 71.43 3.20 27.60

Buffy the Vampire Slayer 7 85.71 100.00 3.43 23.43

Sex and the City 7 100.00 100.00 1.00 30.86

Star Trek: Voyager 7 85.71 85.71 1.00 19.00

Stargate SG-1 8 50.00 12.50 5.00 27.00

Friends 9 55.56 55.56 1.00 43.60

The X-Files 9 22.22 33.33 2.00 51.33

All optimal values are bold emphasised
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general very hard to quantify objectively, as can be seen in

the following examples which show four films and their

two highest-ranked recommendations:

1. Dracula / The Strange Case of Dr. Jekyll and Mr.

Hyde:

(a) Dr. Jekyll and Mr. Hyde

(b) Frankenstein / Bride of Frankenstein: The Legacy

Collection

2. Frank Zappa: Does Humor Belong in Music?:

(a) The Miles Davis Story

(b) Frank Zappa: Baby Snakes

3. WWE: Summerslam 2004:

(a) Wrestlemania XX 2004

(b) WWE: Vengeance 2004

4. Gattaca:

(a) The Fifth Element

(b) Contact

Table 4 Average quality assessment for recommendations of all

sequels in a given series S sorted by leverageFDSM as described in the

text with respect to the first data sample (first 20,000 subsequent user

IDs)

Title of series S n pbr pra first last

Northern Exposure 3 100.00 100.00 1.00 2.00

Seinfeld 3 100.00 100.00 1.00 2.00

Trailer Park Boys 3 0.00 0.00 – –

Ren & Stimpy 3 0.00 33.33 5.00 24.00

Strangers with Candy 3 100.00 100.00 1.00 2.00

Survivor 3 33.33 100.00 1.67 8.67

The Dead Zone 3 66.67 100.00 1.33 3.00

The Jamie Kennedy Experiment 3 0.00 0.00 – –

Roswell 3 100.00 100.00 1.00 5.67

Russell Simmons Presents Def

Poetry

3 0.00 0.00 – –

The Osbournes 3 100.00 100.00 1.00 2.33

The Shield 3 100.00 100.00 1.00 2.00

Sealab 2021 3 66.67 100.00 1.33 45.67

Silk Stalkings 3 66.67 66.67 1.00 9.00

SpongeBob SquarePants 3 33.33 33.33 16.00 27.00

Star Trek: Enterprise 3 66.67 100.00 2.33 29.00

24 3 100.00 100.00 1.00 2.00

Beast Wars Transformers 3 100.00 100.00 1.00 2.00

Boy Meets World 3 100.00 100.00 1.00 47.33

Cold Feet 3 100.00 100.00 1.00 3.67

ER 3 100.00 100.00 1.00 7.67

La Femme Nikita 3 100.00 100.00 1.00 4.33

Millennium 3 33.33 100.00 4.00 37.67

Monk 3 100.00 100.00 1.00 2.00

Yu-Gi-Oh! 3 33.33 100.00 13.00 36.00

In Living Color 4 100.00 25.00 1.00 4.00

Six Feet Under 4 100.00 100.00 1.00 3.75

Smallville 4 100.00 100.00 1.00 3.00

Profiler 4 100.00 100.00 1.00 13.75

Queer as Folk 4 100.00 100.00 1.00 3.00

Law & Order 4 75.00 100.00 1.50 5.50

Mr. Show 4 100.00 100.00 1.00 3.50

Alias 4 100.00 100.00 1.00 3.25

CSI 4 100.00 100.00 1.00 3.00

The West Wing 4 100.00 100.00 1.00 3.00

Will & Grace 4 100.00 100.00 1.00 16.25

Coupling 4 100.00 100.00 1.00 3.00

Curb Your Enthusiasm 4 100.00 100.00 1.00 3.50

Everybody Loves Raymond 4 100.00 50.00 1.00 22.50

The King of Queens 4 100.00 100.00 1.00 3.75

The Man Show 4 50.00 0.00 – –

Farscape 4 100.00 100.00 1.00 3.00

Felicity 4 100.00 100.00 1.00 3.00

The Best of Friends 4 75.00 100.00 1.50 7.00

Gilmore Girls 4 100.00 100.00 1.00 3.25

Table 4 continued

Title of series S n pbr pra first last

King of the Hill 4 50.00 100.00 2.50 41.25

Andromeda 5 80.00 20.00 1.00 4.00

Oz 5 100.00 100.00 1.00 4.20

Angel 5 100.00 100.00 1.00 7.60

Babylon 5 5 100.00 100.00 1.00 4.40

Dawson’s Creek 5 100.00 100.00 1.00 5.00

The Sopranos 5 100.00 100.00 1.00 4.00

Saved by the Bell: The New Class 5 60.00 40.00 1.00 10.00

A Touch of Frost 6 50.00 66.67 1.50 49.25

Dr. Quinn. Medicine Woman 6 66.67 16.67 2.00 27.00

Frasier 6 100.00 50.00 1.00 32.00

Hercules: The Legendary Journeys 6 50.00 0.00 – –

Highlander 6 100.00 100.00 1.00 6.50

Homicide: Life on the Street 6 100.00 100.00 1.00 6.33

South Park 6 100.00 100.00 1.00 43.00

The Simpsons 6 100.00 100.00 1.00 13.33

Xena: Warrior Princess 6 100.00 100.00 1.00 5.33

Star Trek: Deep Space Nine 7 100.00 100.00 1.00 6.29

Star Trek: The Next Generation 7 100.00 100.00 1.00 6.00

Buffy the Vampire Slayer 7 100.00 100.00 1.00 6.00

Sex and the City 7 100.00 100.00 1.00 6.00

Star Trek: Voyager 7 100.00 100.00 1.00 6.00

Stargate SG-1 8 100.00 100.00 1.00 31.75

Friends 9 88.89 100.00 1.22 13.56

The X-Files 9 100.00 100.00 1.00 8.56

All optimal values are bold emphasised
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All of these recommendations seem to be reasonable and

some are even interesting and non-obvious. But given the

other 17,769 films in the data set it is hard to judge whether

these are really the best recommendations. So, we wanted

to find a set with something like a ground truth. Luckily,

the data set at hand allows for some quality measure in this

realm by concentrating on film series like Friends, or Star

Trek. To find them, we have extracted all film titles that

had the key word ‘Season’ in them, standing for one part of

a series. We kept all series that had at least one volume that

was published in 1990 or later (see Table 4 for an over-

view, data on series with less than 3 parts omitted). Given

one film x out of a series and its list L(x) of the first 100

highest-ranked films, we require that the highest-ranked

film in L(x) should be some part of the same series.

Moreover, if the method is good, all other parts of the

series should be recommended in the 100 most highly

ranked films. To analyze the hypothesis, we computed for

each of the series S

1. the number n(S) of sequels in it;

2. the average percentage of films pbr(S) for which the

highest-ranked recommendation is another part from

the same series; 100% is optimal;

3. the average percentage of films pra(S) for which all

parts from the same series were listed under the 100

highest-ranked recommendations (again, 100% is

optimal);

4. among those films that list all other parts of the same

series we computed

Table 5 For each part in the series ‘X-Files’ we show the top five ranked other films according to leverageFDSM (upper row) and leverageSIM

(lower row)

X-Files 1st 2nd 3rd 4th 5th

Season

1

The X-Files:

Season 2

The X-Files: Season 3 The X-Files: Season 5 The X-Files: Season 6 The X-Files:

Season 4

Pirates of the

Caribbean I

The Matrix Lord of the Rings: The

Fellowship of the Ring

Raiders of the Lost Ark Independence

Day

Season

2

The X-Files:

Season 1

The X-Files: Season 3 The X-Files: Season 5 The X-Files: Season 4 The X-Files:

Season 6

The Matrix Pirates of the Caribbean I Lord of the Rings: The

Fellowship of the Ring

Independence Day Raiders of the

Lost Ark

Season

3

The X-Files:

Season 2

The X-Files: Season 1 The X-Files: Season 5 The X-Files: Season 4 The X-Files:

Season 6

The X-Files:

Season 2

The Matrix Pirates of the Caribbean I The X-Files: Season 1 Raiders of the

Lost Ark

Season

4

The X-Files:

Season 2

The X-Files: Season 3 The X-Files: Season 5 The X-Files: Season 1 The X-Files:

Season 6

The Matrix Pirates of the Caribbean I Independence Day The Silence of the Lambs The Sixth Sense

Season

5

The X-Files:

Season 2

The X-Files: Season 3 The X-Files: Season 1 The X-Files: Season 6 The X-Files:

Season 4

Pirates of the

Caribbean I

The Matrix Independence Day Lord of the Rings: The

Fellowship of the Ring

Raiders of the

Lost Ark

Season

6

The X-Files:

Season 2

The X-Files: Season 5 The X-Files: Season 1 The X-Files: Season 3 The X-Files:

Season 7

Pirates of the

Caribbean I

Lord of the Rings: The

Fellowship of the Ring

The Matrix The X-Files: Season 2 Independence

Day

Season

7

The X-Files:

Season 6

The X-Files: Season 5 The X-Files: Season 2 The X-Files: Season 1 The X-Files:

Season 8

The X-Files:

Season 6

The X-Files: Season 2 The X-Files: Season 5 Pirates of the Caribbean I The X-Files:

Season 1

Season

8

The X-Files:

Season 5

The X-Files: Season 6 The X-Files: Season 2 The X-Files: Season 1 The X-Files:

Season 3

The Matrix Pirates of the Caribbean I The X-Files: Season 2 The X-Files: Season 5 The X-Files:

Season 1

Season

9

The X-Files:

Season 6

The X-Files: Season 8 The X-Files: Season 7 The X-Files: Season 2 The X-Files:

Season 1

Pirates of the

Caribbean I

The X-Files: Season 2 The X-Files: Season 6 Indiana Jones and the Last

Crusade

The Matrix
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(a) the average rank firstðSÞ of the first listed sequel

from the same series (1 is optimal)

(b) the average rank lastðSÞ of the last listed sequel

from the same series (n(S) - 1 is optimal).

Again, we compare the results based on leverageSIM and

leverageFDSM: Table 3 shows the quality measures based

on leverageSIM; all optimal results are shown in bold

emphasised. It can be easily seen that there is not a single

series in which all quality measures are optimal, but there

are three in which 3 out of 4 measures are optimal. For

more than half of the series, none of the values is optimal.

Table 4 lists the same quality measures for the rankings

based on leverageFDSM. Here, 19 of the listed 70 series are

optimal with respect to all values, the recommendations of

most series are optimal and near-optimal to 3 out of 4

values, and only 8 are non-optimal with respect to all

values. In summary, the method has performed very well

on this subset of assessable films which raises the hope that

other, less-well assessable recommendations are of similar

quality.

We have also computed the top ten ranked films for each

film in a series. Due to space restricitions we only show

the top five for all series with at least 7 parts in

Tables 5–12; the full tables can be found at our website

(http://www.ninasnet.de/projects/omp_recommendations/

10bestrecommendations.html). It can be seen that the top

five are more often from the same series using lever-

ageFDSM than if using leverageSIM. In general (looking at

the whole set of series), it can be seen that leverageSIM

often ranks block busters very high—the ten films most

often ranked under the first ten are Pirates of the Caribbean:

The Curse of the Black Pearl; Independence Day; The

Table 6 For each part in the series ‘Friends’ we show the top five ranked other films according to leverageFDSM (upper row) and leverageSIM

(lower row)

Series: Friends 1st 2nd 3rd 4th 5th

Season 1 Friends: Season 4 Friends: Season 3 The Best of Friends:

Season 2

The Best of Friends:

Season 1

Friends: Season 5

Miss Congeniality Forrest Gump Pretty Woman Pirates of the Caribbean I Friends: Season 3

Season 2 Friends: Season 3 Friends: Season 1 Friends: Season 4 The Best of Friends: Vol. 1 Friends: Season 5

Miss Congeniality Forrest Gump Pretty Woman Pirates of the Caribbean I Independence Day

Season 3 Friends: Season 1 Friends: Season 4 The Best of Friends:

Season 2

Friends: Season 2 Friends: Season 5

Miss Congeniality Forrest Gump Friends: Season 1 Pirates of the Caribbean I Pretty Woman

Season 4 The Best of Friends:

Season 2

The Best of Friends:

Season 1

Friends: Season 1 Friends: Season 5 The Best of Friends:

Season 3

Miss Congeniality Friends: Season 1 Forrest Gump The Best of Friends:

Season 2

Pretty Woman

Season 5 Friends: Season 6 The Best of Friends:

Season 4

Friends: Season 4 Friends: Season 7 Friends: Season 8

Friends: Season 4 Friends: Season 6 Miss Congeniality Pretty Woman The Best of Friends:

Season 4

Season 6 Friends: Season 5 The Best of Friends:

Season 4

Friends: Season 7 Friends: Season 8 Friends: Season 4

Friends: Season 5 The Best of Friends:

Season 4

Friends: Season 7 Friends: Season 4 Forrest Gump

Season 7 Friends: Season 6 Friends: Season 5 Friends: Season 8 The Best of Friends:

Season 4

Friends: Season 4

Friends: Season 6 Friends: Season 5 Miss Congeniality Forrest Gump Pretty Woman

Season 8 Friends: Season 6 Friends: Season 5 Friends: Season 7 The Best of Friends:

Season 4

Friends: Season 4

Friends: Season 5 Friends: Season 6 Friends: Season 7 Miss Congeniality Forrest Gump

Season 9 Friends: Season 7 Friends: Season 6 Friends: Season 8 Friends: Season 5 The Best of Friends:

Season 4

Friends: Season 7 Friends: Season 6 Miss Congeniality Pretty Woman Forrest Gump
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Matrix; Lord of the Rings: The Fellowship of the Ring and

The Two Towers; Forrest Gump; Miss Congeniality; Spi-

der Man; The Sixth Sense and American Beauty. With

leverageFDSM, the ten films most often ranked under the

first ten are Friends, Season 4,5,6,7; The Best of Friends,

Season 4; CSI, Season 1 and 3; Buffy the Vampire Slayer 5

and 7.. A one-mode projection of the 400 films that are part

of a series and in which each film is connected to all films

in its top ten ranks, results in a graph with 758 nodes for

leverageSIM and in a graph with 958 nodes for lever-

ageFDSM. Although this might at first sound non-intuitive,

leverageFDSM identifies more different films as similar to

the series than leverageSIM which mainly points to block

busters. A good example for this finding is the series ‘‘The

World Poker Tour’’ with two seasons. leverageFDSM con-

nects them with films called ‘‘World Poker Tour: Battle of

Champions’’, ‘‘Winning Strategies: Texas Hold’em Poker

with Mike Caro’’, ‘‘Masters of Poker: Vol. 1: Phil Hell-

muth’s Million Dollar Poker System’’, and‘‘Masters of

Poker: Vol. 2: Phil Hellmuth’s Million Dollar Secrets to

Bluffing and Tells’’. leverageSIM ranks none of these films

among the first ten rankings, but rather films like ‘‘Jurassic

Park’’ or ‘‘Enemy of the State’’.

Figures 12 and 13 show two OMPs on a restricted

subsets of films: in both cases, we started with a graph in

which every part of a series was connected to its top ten

ranked other films, as indicated by leverageSIM and

leverageFDSM, respectively. We kept only those edges that

were reciprocal and show all connected components with at

least four nodes, since otherwise the graphs contained too

many components to be visualized on one page. It can be

seen that the OMP based on leverageSIM only contains 68

Table 7 For each part in the series ‘Stargate SG-1’ we show the top five ranked other films according to leverageFDSM (upper row) and

leverageSIM (lower row)

Series: Stargate

SG-1

1st 2nd 3rd 4th 5th

Season 1 Stargate SG-1:

Season 2

Stargate SG-1:

Season 3

Stargate SG-1: Season 4 Stargate SG-1: Season 6 Stargate SG-1: Season 5

Independence Day Armageddon Pirates of the Caribbean I Men in Black II Lord of the Rings: The

Fellowship of the Ring

Season 2 Stargate SG-1: Season 3 Stargate SG-1:

Season 4

Stargate SG-1: Season 1 Stargate SG-1: Season 6 Stargate SG-1: Season 5

Independence Day Stargate SG-1:

Season 3

Stargate SG-1: Season 1 Men in Black II The Matrix

Season 3 Stargate SG-1: Season 2 Stargate SG-1:

Season 4

Stargate SG-1: Season 6 Stargate SG-1: Season 5 Stargate SG-1: Season 1

Independence Day Stargate SG-1:

Season 2

Stargate SG-1: Season 4 Men in Black II Stargate SG-1: Season 6

Season 4 Stargate SG-1: Season 6 Stargate SG-1:

Season 5

Stargate SG-1: Season 3 Stargate SG-1: Season 2 Stargate SG-1: Season 7

Stargate SG-1: Season 6 Independence Day Stargate SG-1: Season 5 Stargate SG-1: Season 3 Stargate SG-1: Season 2

Season 5 Stargate SG-1: Season 6 Stargate SG-1:

Season 4

Stargate SG-1: Season 3 Stargate SG-1: Season 2 Stargate SG-1: Season 7

Stargate SG-1: Season 6 Stargate SG-1:

Season 4

Independence Day Stargate SG-1: Season 3 Stargate SG-1: Season 2

Season 6 Stargate SG-1: Season 4 Stargate SG-1:

Season 5

Stargate SG-1: Season 3 Stargate SG-1: Season 2 Stargate SG-1: Season 7

Stargate SG-1: Season 4 Stargate SG-1:

Season 5

Independence Day Stargate SG-1: Season 3 Stargate SG-1: Season 2

Season 7 Stargate SG-1: Season 5 Stargate SG-1:

Season 6

Stargate SG-1: Season 4 Stargate SG-1: Season 3 Stargate SG-1: Season 2

Stargate SG-1: Season 5 Independence Day Stargate SG-1: Season 6 Stargate SG-1: Season 4 Stargate SG-1: Season 3

Season 8 Stargate SG-1: Season 7 Stargate SG-1:

Season 5

Stargate SG-1: Season 6 Stargate SG-1: Season 4 Stargate SG-1: Season 2

Independence Day Men in Black II Lord of the Rings:

The Two Towers

Lord of the Rings:

The Fellowship of the Ring

Stargate SG-1: Season 7
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of the starting 400 films and parts of only 11 series of the

original 165 series. The only non-trivial component shows

a connection between the series ‘‘Friends’’ and ‘‘The best

of Friends’’. The OMP based on leverageFDSM contains

276 out of the 400 films we started with, and 49 out of the

165 series. Some of the connections found by lever-

ageFDSM are non-obvious, e.g., the one between ‘‘Monk’’

and ‘‘The Dead Zone’’. But some of the non-trivial

components reveal very interesting connections between

series: for example, some characters of the two series

‘‘Angel’’ and ‘‘Buffy’’ make an appearance in both series,

the same is true for ‘‘Xena’’ and ‘‘Hercules’’, and these

series are very tightly connected. Another component

connects the series ‘‘CSi’’, ‘‘CSI: Miami’’, ‘‘24’’, ‘‘Alias’’,

and ‘‘The Shield’, all well-known crime series. The series

‘‘Queer as Folk’’ and ‘‘The L Word’’ are both series with

homosexual characters and focusing on problems in their

relationships, and they can be found in one component as

well. The series ‘‘Curb your Enthusiasm’’ is a half-auto-

biographic series centering on Larry David, who is one of

the co-creators of the series ‘‘Seinfeld’’, and both are in

the same component.

In summary, the restriction on a set of films for which

ground truth can be defined shows strong evidence that

using the topmost ranked films by leverageFDSM value as

neighbors in an OMP will result in a graph in which most

edges connect similar films. Not all applications might be

best served by using leverageFDSM; as we have shown

above, also lift can be generalized to the fixed degree

sequence model (FDSM), and other interestingness mea-

sures should be easy to adjust to the new null-model

FDSM. Future research will then need to show when which

interestingness measure is best as a basis for a helpful

OMP.

Table 8 For each part in the series ‘Star Trek: Voyager’ we show the top five ranked other films according to leverageFDSM (upper row) and

leverageSIM (lower row)

Series: Star Trek:

Voyager

1st 2nd 3rd 4th 5th

Season 1 Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 6

Independence Day Pirates of the

Caribbean I

The Matrix Indiana Jones and the

Last Crusade

Spider-Man

Season 2 Star Trek: Voyager:

Season 1

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 6

Star Trek: Voyager:

Season 1

Independence Day Pirates of the Caribbean

I

Star Trek: Voyager:

Season 3

Indiana Jones and the

Last Crusade

Season 3 Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 1

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 6

Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 1

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 6

Season 4 Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 6

Star Trek: Voyager:

Season 1

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 2

Independence Day Star Trek: Voyager:

Season 5

Indiana Jones and the

Last Crusade

Season 5 Star Trek: Voyager:

Season 6

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 7

Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 6

The Matrix Indiana Jones and the

Last Crusade

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 3

Season 6 Star Trek: Voyager:

Season 7

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 2

Star Trek: Voyager:

Season 7

Star Trek: Voyager:

Season 5

Indiana Jones and the

Last Crusade

Independence Day Star Trek: Voyager:

Season 4

Season 7 Star Trek: Voyager:

Season 6

Star Trek: Voyager:

Season 5

Star Trek: Voyager:

Season 4

Star Trek: Voyager:

Season 3

Star Trek: Voyager:

Season 1

Star Trek: Voyager:

Season 6

Indiana Jones and the

Last Crusade

The Matrix Star Trek: Voyager:

Season 5

Pirates of the

Caribbean I
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7 Summary and open questions

The systematic approach to one-mode projections of

bipartite graphs, which was proposed in this paper, can be

adjusted to different tasks, mainly by choosing different

motifs or by choosing different random graph models as a

null-model. There are many open questions regarding when

to use which motif and which random graph model.

Another open question is how the network analytic

approach can help to find more complex association rules.

In the following we will discuss these questions before we

give a summary of the article.

7.1 Motifs

In ongoing work, we are working on bipartite graphs from

a bioinformatic data set. In these bipartite graphs, edges

have a binary quality, represented as ‘red’ or ‘green’; there

are no multiple edges regardless of the color, i.e., node v is

either not connected to node a on the other side, or by a red

edge, or by a green edge. In these graphs it makes sense to

not only look for the motif ‘‘common neighbor’’ but also to

evaluate whether this common neighbor is incident to

edges of the same color or different colors. Thus, we

defined three new motifs: for any given pair of nodes v, w,

M1 counts the number of common neighbors a connected

by red edges to v and w, M2 counts the ones connected by

green edges to v and w, and M3 counts the ones connected

by one red to v and one green edge w. Note, that the latter

motif is now asymmetric and in the resulting one-mode

projection, we introduced directed edges to indicate whe-

ther v was connected by a red edge to a which was con-

nected by a green edge to w or vice versa. Our first results

are very encouraging and reveal clusters of nodes that are

either connected by only red or only green edges, indi-

cating groups of molecules that act coherently.

Based on the general framework proposed in this paper,

it is now easy to define motifs for general bipartite graphs

Table 9 For each part in the series ‘Sex and the City’ we show the top five ranked other films according to leverageFDSM (upper row) and

leverageSIM (lower row)

Series: Sex

and the City

1st 2nd 3rd 4th 5th

Season 1 Sex and the City: Season 2 Sex and the City: Season 3 Sex and the City:

Season 4

Sex and the City: Season 5 Sex and the City: Season 6:

Part 1

Sex and the City: Season 2 Sex and the City: Season 3 Pretty Woman American Beauty Pirates of the Caribbean I

Season 2 Sex and the City: Season 3 Sex and the City: Season 1 Sex and the City:

Season 4

Sex and the City: Season 5 Sex and the City: Season 6:

Part 1

Sex and the City: Season 1 Sex and the City: Season 3 Pretty Woman Miss Congeniality Forrest Gump

Season 3 Sex and the City: Season 2 Sex and the City: Season 4 Sex and the City:

Season 1

Sex and the City: Season 5 Sex and the City: Season 6:

Part 1

Sex and the City: Season 2 Sex and the City: Season 1 Sex and the City:

Season 4

Pretty Woman Sex and the City: Season 5

Season 4 Sex and the City: Season 3 Sex and the City: Season 5 Sex and the City:

Season 2

Sex and the City: Season 6:

Part 1

Sex and the City: Season 1

Sex and the City: Season 3 Sex and the City: Season 2 Sex and the City:

Season 5

Sex and the City: Season 1 Sex and the City: Season 6:

Part 1

Season 5 Sex and the City: Season 6:

Part 1

Sex and the City: Season 4 Sex and the City:

Season 3

Sex and the City: Season 6:

Part 2

Sex and the City: Season 2

Sex and the City: Season 6:

Part 1

Sex and the City: Season 4 Sex and the City:

Season 3

Sex and the City: Season 2 Sex and the City: Season 1

Season 6:

Part 1

Sex and the City: Season 5 Sex and the City: Season 6:

Part 2

Sex and the City:

Season 4

Sex and the City: Season 3 Sex and the City: Season 2

Sex and the City: Season 5 Sex and the City: Season 4 Sex and the City:

Season 2

Sex and the City: Season 3 Sex and the City: Season 6:

Part 2

Season 6:

Part 2

Sex and the City: Season 6:

Part 1

Sex and the City: Season 5 Sex and the City:

Season 4

Sex and the City: Season 3 Sex and the City: Season 2

Sex and the City: Season 6:

Part 1

Sex and the City: Season 5 Sex and the City:

Season 4

Sex and the City: Season 2 Sex and the City: Season 3
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with edges from up to k categories, i.e., weights with

k different values. It is, however, still an open question how

to deal with weighted edges in general in the proposed

framework. This is mainly because it is hard to think of a

suitable corresponding random graph model that can deal

with the weights.

7.2 Random graph models

There are in general many open questions on when which

random graph model is the best suitable. We will now

discuss why even more involved random graph models

might be applicable: The idea of a random graph model is

to model possible outcomes of a network generating pro-

cess between the nodes. In a market basket analysis, it

might thus model the process of a user entering a store and

selecting a product. Her decision might depend on her

mood, on the products she has already bought, the weather,

the popularity of a product, and her general shopping

behavior. The question is now, which of these features

have to be modeled in order to get a good understanding of

which products are often bought together. Of course, the

model should not be based on what the user has already

bought because this is exactly the correlation we want to

understand from the data. In a first approximation, the

model should also neglect things like the mood or the

weather because it is likely that these effects will smooth

out over large data sets. However, an important thing to

model might be her general shopping behavior, i.e., how

many different products she buys on average per time

interval. Regarding films, the Netflix data set shows very

clearly that there are very different users: some that watch

(or rate) on average more than four films per day and those

that hardly rate four films per year (see Fig. 1). It is a

Table 10 For each part in the series ‘Buffy the Vampire Slayer’ we show the top five ranked other films according to leverageFDSM (upper row)

and leverageSIM (lower row)

Series: Buffy the

Vampire Slayer

1st 2nd 3rd 4th 5th

Season 1 Buffy the Vampire

Slayer: Season 2

Buffy the Vampire Slayer:

Season 3

Buffy the Vampire

Slayer: Season 4

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire

Slayer: Season 6

Pirates of the

Caribbean I

Lord of the Rings: The

Fellowship of the Ring

The Matrix Lord of the Rings:

The Two Towers

Independence Day

Season 2 Buffy the Vampire

Slayer: Season 3

Buffy the Vampire Slayer:

Season 1

Buffy the Vampire

Slayer: Season 4

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire

Slayer: Season 6

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire Slayer:

Season 1

Pirates of the

Caribbean I

Buffy the Vampire

Slayer: Season 4

The Matrix

Season 3 Buffy the Vampire

Slayer: Season 2

Buffy the Vampire Slayer:

Season 4

Buffy the Vampire

Slayer: Season 1

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire

Slayer: Season 6

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire Slayer:

Season 1

Pirates of the

Caribbean I

Buffy the Vampire

Slayer: Season 4

Spider-Man

Season 4 Buffy the Vampire

Slayer: Season 3

Buffy the Vampire Slayer:

Season 2

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire

Slayer: Season 1

Buffy the Vampire

Slayer: Season 6

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire Slayer:

Season 2

Buffy the Vampire

Slayer: Season 1

Buffy the Vampire

Slayer: Season 5

Pirates of the

Caribbean I

Season 5 Buffy the Vampire

Slayer: Season 4

Buffy the Vampire Slayer:

Season 3

Buffy the Vampire

Slayer: Season 6

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire

Slayer: Season 7

Buffy the Vampire

Slayer: Season 4

Buffy the Vampire Slayer:

Season 3

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire

Slayer: Season 6

Buffy the Vampire

Slayer: Season 1

Season 6 Buffy the Vampire

Slayer: Season 5

Buffy the Vampire Slayer:

Season 4

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire

Slayer: Season 7

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire Slayer:

Season 4

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire

Slayer: Season 1

Season 7 Buffy the Vampire

Slayer: Season 5

Buffy the Vampire Slayer:

Season 6

Buffy the Vampire

Slayer: Season 2

Buffy the Vampire

Slayer: Season 4

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire

Slayer: Season 5

Buffy the Vampire Slayer:

Season 2

Buffy the Vampire

Slayer: Season 3

Buffy the Vampire

Slayer: Season 4

Buffy the Vampire

Slayer: Season 6
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consistent finding that many relationships show this long-

tail behavior in which a few nodes have a very high

number of relations and most have only a few number

(Dorogovtsev and Mendes 2003).

If this is the only information we have about a user-

product relationship, the FDSM is clearly the model that

should be used. With the Netflix data set we had even more

information, namely, when a product (film) was introduced

into the market and the data at which a rating occurred. Our

method gave, e.g., intuitively quite irrelevant recommen-

dations for the film ‘Good morning, Vietnam’ from 1987,

since the Netflix data set was compiled from customer info

obtained from 2000 to 2005. Of course, most customers in

2000 can be assumed to already know the film. A more

involved random graph model could take such information

into account, and, e.g., only allow edges (a rating) for films

that are already on the market. In other settings, e.g.,

biology, a total randomization might not model the systems

close enough. Rather, certain nodes might only related to

nodes from a subset of the other sides. All of these modi-

fications can easily be included into a corresponding ran-

dom graph model G. Leverage and lift can then be

computed with respect to the newly constructed random

graph model. However, it is necessary to show that there is

a uniform sampling method from G and that the expected

co-occurrence in this model is monotonic as required by

Piatetsky-Shapiro.

7.3 Association rules

We have shown above that the applicability of the simple

statistic independence model (SIM) and its corresponding

simple bipartite random graph model (SiBiRaG) are

limited in assessing the significance of co-occurrence

Table 11 For each part in the series ‘Star Trek: The Next Generation’ we show the top five ranked other films according to leverageFDSM (upper

row) and leverageSIM (lower row)

Series: Star Trek:

The Next

Generation

1st 2nd 3rd 4th 5th

Season 1 Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 2

Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 7

Independence Day The Matrix Pirates of the Caribbean I Lord of the Rings: The

Fellowship of the Ring

Lord of the Rings: The

Two Towers

Season 2 Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 7

Star Trek: The Next

Generation: Season 6

Independence Day The Matrix Star Trek: The Next

Generation: Season 3

Pirates of the Caribbean I Men in Black

Season 3 Star Trek: The Next

Generation: Season 1

Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 2

Star Trek: The Next

Generation: Season 6

The Matrix Independence Day Lord of the Rings: The

Fellowship of the Ring

Pirates of the Caribbean I Spider-Man

Season 4 Star Trek: The Next

Generation: Season 6

Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 7

Star Trek: The Next

Generation: Season 2

Star Trek: The Next

Generation: Season 6

Independence Day Pirates of the Caribbean I The Matrix Star Trek: The Next

Generation: Season 5

Season 5 Star Trek: The Next

Generation: Season 7

Star Trek: The Next

Generation: Season 6

Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 2

Indiana Jones and the

Last Crusade

Raiders of the Lost Ark The Matrix Star Trek: The Next

Generation: Season 7

Star Trek: The Next

Generation: Season 6

Season 6 Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 7

Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 2

The Matrix Indiana Jones and the

Last Crusade

Pirates of the Caribbean I Independence Day Lord of the Rings: The

Fellowship of the Ring

Season 7 Star Trek: The Next

Generation: Season 5

Star Trek: The Next

Generation: Season 6

Star Trek: The Next

Generation: Season 4

Star Trek: The Next

Generation: Season 3

Star Trek: The Next

Generation: Season 2

Star Trek: The Next

Generation: Season 5

Indiana Jones and the

Last Crusade

Star Trek: The Next

Generation: Season 6

Raiders of the Lost Ark The Matrix
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motifs. This failure can be now explained from both

perspectives: the association rules perspective and the

network analytic perspective. The statistical model

assumes that the probabilities of co-occurrence are inde-

pendent of all but the degrees of the concerned products.

From this assumption it follows that the expected co-

occurrence of a given pair of products can be expressed

by the product of the single probabilities. However, any

user that buys k products induces k
2

� �
co-occurrence

events. These are of course not independent. Since in

most real-world data sets there are some customers which

buy many different products k 
 1, SIM cannot even be

Table 12 For each part in the series ‘Star Trek: Deep Space Nine’ we show the top five ranked other films according to leverageFDSM (upper

row) and leverageSIM (lower row)

Series: Star Trek:

Deep Space Nine

1st 2nd 3rd 4th 5th

Season 1 Star Trek: Deep

Space Nine:

Season 2

Star Trek: Deep Space

Nine: Season 4

Star Trek: Deep Space

Nine: Season 6

Star Trek: Deep

Space Nine:

Season 7

Star Trek: Deep

Space Nine:

Season 3

Independence Day Lord of the Rings: The

Fellowship of the Ring

Indiana Jones and the Last

Crusade

The Matrix Pirates of the

Caribbean I

Season 2 Star Trek: Deep

Space Nine:

Season 1

Star Trek: Deep Space

Nine: Season 4

Star Trek: Deep Space

Nine: Season 3

Star Trek: Deep

Space Nine:

Season 6

Star Trek: Deep

Space Nine:

Season 7

Star Trek: Deep

Space Nine:

Season 1

Indiana Jones and the

Last Crusade

Independence Day Raiders of the Lost

Ark

The Matrix

Season 3 Star Trek: Deep

Space Nine:

Season 2

Star Trek: Deep Space

Nine: Season 4

Star Trek: Deep Space

Nine: Season 1

Star Trek: Deep

Space Nine:

Season 6

Star Trek: Deep

Space Nine:

Season 7

Pirates of the

Caribbean I

The Matrix Independence Day Star Trek: Deep

Space Nine:

Season 2

Lord of the Rings:

The Two Towers

Season 4 Star Trek: Deep

Space Nine:

Season 2

Star Trek: Deep Space

Nine: Season 1

Star Trek: Deep Space

Nine: Season 6

Star Trek: Deep

Space Nine:

Season 3

Star Trek: Deep

Space Nine:

Season 5

Indiana Jones and

the Last Crusade

Independence Day The Matrix Star Trek: Deep

Space Nine:

Season 2

Star Trek: Deep

Space Nine:

Season 1

Season 5 Star Trek: Deep

Space Nine:

Season 6

Star Trek: Deep Space

Nine: Season 7

Star Trek: Deep Space

Nine: Season 4

Star Trek: Deep

Space Nine:

Season 1

Star Trek: Deep

Space Nine:

Season 2

Indiana Jones and

the Last Crusade

Star Trek: Deep Space

Nine: Season 6

Raiders of the Lost Ark Star Trek: Deep

Space Nine:

Season 7

The Matrix

Season 6 Star Trek: Deep

Space Nine:

Season 7

Star Trek: Deep Space

Nine: Season 5

Star Trek: Deep Space

Nine: Season 1

Star Trek: Deep

Space Nine:

Season 4

Star Trek: Deep

Space Nine:

Season 2

Indiana Jones and

the Last Crusade

Independence Day Star Wars: Episode V: The

Empire Strikes Back

Star Trek: Deep

Space Nine:

Season 7

Lord of the Rings:

The Two Towers

Season 7 Star Trek: Deep

Space Nine:

Season 6

Star Trek: Deep Space

Nine: Season 5

Star Trek: Deep Space

Nine: Season 1

Star Trek: Deep

Space Nine:

Season 2

Star Trek: Deep

Space Nine:

Season 4

Indiana Jones and

the Last Crusade

Raiders of the Lost Ark Star Trek: Deep Space

Nine: Season 6

Independence Day Lord of the Rings:

The Two Towers
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used to approximate the expected number of co-occur-

rence events in an null-model for independence. From the

network analytic perspective, SiBiRaG fails because it

does not maintain the degree sequence of the right-hand

side which is essentially responsible for the total number

of co-occurrence events.

The question is now how these findings can help to find

better association rules. Our first proposal above was to

generalize interesting measures to allow for more involved

random graph models. Here we want to sketch a general-

ized approach to find association rules between more than

two single products, as it was also discussed by Raeder and

Chawla (2011).

Finding good candidates for association rules is not an

easy task and has been discussed extensively in literature

(Agrawal et al. 1993). It is in general more important to find

sensible candidates than to find all possible ones. Thus, a

simple idea is to use the one-mode projection onto the

products as a basis. A reasonable way would be to choose,

e.g., a z-score of 3.29, i.e., a p-value of 0.001 and to connect

all pairs of products whose co-occurrence is above this

threshold. In this graph, any kind of clustering algorithm can

be used to find groups of nodes that are densely intercon-

nected, e.g., the clustering algorithm by Girvan and New-

man (2002), a hierarchical clustering (Ward 1963) or the one

by Palla et al. (2005) that allows for overlapping cliques.

Any of these groups constitutes a set of nodes in which many

of the pairs are already significantly co-occurring. This

makes them good candidates for co-occurring together.

Raeder and Chawla (2011) have proposed this general

framework and applied it with success, using a classic OMP

as a first step. In future research we propose to use the

methods discussed here instead.

Fig. 12 Each film in a series as defined in the text was connected to

its top ten ranked films regarding leverageSIM if the edge was

reciprocal. The figure shows all connected components with at least

four nodes, and indicates which part from which series can be found

in the components. Numbers in brackets give the seasons included in

the respective component. Abbreviations: ‘‘Star Trek: TNG’’ is ‘‘The

next generation’’, and ‘‘SG-1’’ denotes ‘‘Star Gate SG-1’’

Fig. 13 Each film in a series as

defined in the text was

connected to its top ten ranked

films regarding leverageFDSM if

the edge was reciprocal. The

figure shows all connected

components with at least four

nodes, and indicates which part

from which series can be found

in the components. Numbers in

brackets give the seasons

included in the respective

component. Abbreviations:

‘‘Star Trek: TNG’’ denotes ‘‘The

next generation’’, ‘‘Star Trek:
DSN’’ denotes ‘‘Star Trek: Deep

Space Nine’’, and ‘‘Voyager’’

denotes ‘‘Star Trek: Voyager’’
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7.4 Summary

In this article we have proposed a new way to assess one-

mode projections of bipartite networks: we have shown that

basically each one-mode projection is based on the number

of occurrences of a certain motif, namely the co-occurrence

of two nodes v, w, i.e., the number of their common

neighbors. In a second step, the significance of the occur-

rence of this motif is evaluated. In a classic one-mode

projection, a single common neighbor is seen as significant

enough to result in an edge between v and w. By drawing a

connection between association rules and one-mode pro-

jections we have identified a rich set of significance eval-

uating rules, the so-called interestingness measures. Many

of these measures compare the observed occurrence with

the expected number under a certain expectation model. We

have shown that the classically used expectation model

cannot be used for most real-world network data since these

show strongly skewed degree distributions on both sides of

the graph. We have then argued that the new model, FDSM,

needs to be used to maintain the degree distributions on both

sides. With this, the expected co-occurrence of any two

nodes can be computed and compared with the observed

value. Based on two classic interestingness measures, we

have then introduced two new similarity measures between

any two nodes on one side: leverageFDSM and liftFDSM.

These similarity measures can now be used to build a sparse

one-mode projection of the bipartite graph as shown on the

example of the leverageFDSM. We have shown that the pairs

of nodes with globally highest modified leverageFDSM and

the local lists that rank for each node the other nodes with

highest modified leverageFDSM, are either statistically sta-

ble with respect to different data samples or they are

(almost) empty.

7.5 Outlook

Bipartite graphs belong to the large group of networks

where multiple types of actors are connected by one or

more relationships, which we call Multiple-Actor/Multiple-

Relationship networks (MAMuR networks). Huge com-

munities in Web 2.0 applications and the numerous

large-scale projects in biology have now created enormous

amounts of data that can very often be combined into

MAMuR networks. For example, in biology, proteins can

interact directly with each other but they are also controlled

by other types of molecules, like hormones or miRNA. The

past decade has mostly seen analyses of networks repre-

senting a single relationship between a single type of actor,

e.g., analysis of the protein–protein interaction network on

various levels (Milo et al. 2002; Palla et al. 2005; Vázquez

et al. 2002). We call these networks Single-Actor/

Single Relationship networks (SASiR networks). To really

understand the behavior of complex networks, it will be

inevitable to combine these networks into a MAMuR

framework, e.g., to combine into one graph the relation

among proteins and between proteins and miRNA. The

proposed approach to one-mode projection of bipartite

graphs is only a first step to condense the information in

these graphs into the better understood SASiR networks.

But since the framework itself is based on how to evaluate

motifs in multipartite graphs, it can also be easily extended

to a general analysis of MAMuR networks in various ways

and thus we hope to contribute to the understanding of this

important and abundant type of networks.
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