1

Almost 10 years ago, Watts and Strogatz built the basis for a new kind of science
by introducing a new model for real-world networks, the so—called small-world
model [39]. They showed that a graph family based on a so—called local graph and
some random edges could account for some properties of real-world networks
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Abstract

In the last years, a large number of graph clustering algorithms has
been proposed that try to detect dense parts or clusters in a given net-
work, e.g., [10, 14, 16, 32, 35, 34]. The resulting clusters are interpreted
as functional modules, i.e., as a group of objects that have the same func-
tion within the network. This interpretation is implicitly justified by the
assumption that most real-world networks are local, i.e., that edges be-
tween objects signify that they are near or similar to each other. Despite
its importance, the term locality remains an intuitively well perceived but
somehow elusive concept. In this article we pose the question of what
a local graph is and discuss various findings in real-world networks. We
extract a model of locality that can be easily tested if the set of objects
is embedded in a metric space and we discuss what kind of locality is
necessary in a real-world network in order to apply a clustering algorithm
to it. The main result of this article is that the application of a clustering
algorithm requires that a network is strongly local, a property that cannot
be asserted without looking at the context in which a network is located.
The article argues why, e.g., the Internet data on the level of autonomous
systems and word—adjacency graphs are not likely to give reasonable re-
sults when clustered, and summarizes four characteristics of real-world
networks that are required to be ’clusterable’.
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that could not be explained by a purely random graph model. Following their
article, a large number of different small-world models was presented, all of
them based on a local and a random graph component [3, 7, 11, 20, 21, 23, 25].
The local graph component is, e.g., a ring in which every vertex is connected to
its k-next neighbors [39], or any d-dimensional grid graph [20, 21, 25].

But what is a local graph in general? Intuitively speaking, a local graph is
a graph in which objects are more likely to be connected if they are near to
each other in a geometrical sense or if they are somewhat similar in a broader
sense. In other words, in a local graph the objects represented by it can be
characterized in various ways and this characterization can be used to define
similarity between the objects. As an example Palla et al. point out that humans
can be characterized in many different ways, and every characteristic defines a
different set of people with which they come into contact [32]: the job will
cause relationships with people working at the same place, as the membership
in a sports-club will lead to relationships with other sportsmen. Most of the
relationships will be to persons that are also near in a geographical sense, but
some will be caused by a very special interest that connects experts from all over
the world with each other. In the latter case, the locality cannot be interpreted
by geographical distance but rather as a low distance in character space.

Thus, one the one hand we have the objects in character space that are
similar to each other (or not). Then there is a network generating process that
causes relations between the objects. These relations are then represented by
vertices and edges in a network. Clustering algorithms have been developed to
discover groups of densely connected vertices because it is assumed that they
represent objects that are near in character space. In a way, the character space
of a set of objects thus constitutes the Platonic idea of the real relationship
between the objects. But as in Plato’s allegory of the cave, the idea, i.e., the
real character space in which objects are embedded, is often elusive for humans.
Network data is now supposed to be something like the Platonic shadow of
this ideal characteristic space (Fig. 1): if two objects in character space are
next to each other, we assume that it is likely that they are connected in the
network. Since the network is only a shadow we expect that some edges between
near objects will not appear and that edges exist between objects that are not
really near in the character space. This part of the networks is assumed to be
the random graph part in the small-world models cited above.

More importantly for the idea of clustering, this assumption that near ob-
jects are connected by an edge is often considered to be a bi-implicaton (s. Fig.
2): it is assumed that if two objects are connected in a network then they are
also near to each other in character space. Note that this is by no means ob-
vious: A network could contain all the edges between near objects but add so
many long-distance edges that it is not valid to assume that every edge signifies
low distance. However, based on this bi-implication, a huge number of different
clustering algorithms has been proposed in recent years [10, 14, 16, 32, 35, 34].
By taking only the structural information of the network (sometimes weighted,
sometimes unweighted), these algorithms try to detect densely connected com-
ponents of the graph that are only loosely connected with each other. It is
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Figure 1: Many real-world networks are considered to be 'local’, i.e., that the
objects represented by the network are somewhat similar to each other (to different
degrees), and the more similar they are to each other, the more likely it is that they
are connected by an edge. The similarity between the objects could, e.g., be given
by a hierarchy or by a tagging system (left hand side). It is expected that different
kinds of relationships between the objects, e.g., the contacts by email or the weblinks
between the objects, are dependent on the similarity of the objects in the space on the
left hand side. l.e., we expect that there is a network generating process, e.g., the
way people make contact, that favors the realization of those edges that are between
near objects. The network is then considered to be a shadow of the character space,
which can be rediscovered by clustering it (s. Fig. 2).
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Figure 2: The main assumption for the application of clustering algorithms is that
there exists a real character space in which the objects of interest are embedded and
that the given network resembles this space by preferably linking objects that are near
to each other in that space. It is then assumed that this locality of edges together
with an uneven distribution of the objects in space generates a clustering structure
in which dense subgraphs (clusters) emerge that are only loosely connected. These
clusters can be detected by the various types of algorithms and are interpreted as
functional modules of objects in the given system.

important to notice that these algorithms rely heavily on the assumption that
an edge between objects signifies similarity between them in some meaningful
character space. Thus, a network should only be clustered if it can be considered
to be local.

To ensure locality of the graph it would thus be required to know the charac-
ter space and the embedding of the objects in it beforehand. With this informa-
tion it can then be checked whether most edges are between near objects. But of
course, most often we use a clustering algorithm to find out about the character
space! For example, clustering algorithms have been used successfully to find
functional modules in protein—protein interaction networks [32], in metabolic
networks [33], social groups of scientists, sports clubs, or friendship networks
[29, 28, 27, 26], and groups of similar books in large warehouse data [9], to name
but a few. And if one had had this information beforehand, a clustering would
not have been necessary anymore.

Thus, the following questions remains: what if we do not have any contex-
tual information, i.e., if we do not know the character space or if there is no
reasonable distance measure beside the one given by the network? Are there
special requirements of a graph to be meaningfully clustered? Are there exam-
ples of real-world networks that should not be clustered because they lack these
requirements?

In the following we will first give some necessary definitions in Section 2 and
then formalize the above given framework of locality in graphs in Section 3.
We will then use this framework to analyze necessary conditions for applying
a clustering algorithm to a given network in order to get meaningful results.
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We will also present some examples of networks that are not likely to give good
results if clustered. The article is summarized by open questions in Section 4.

2  Definitions

Let G = (E,V) be a graph with |V| = n vertices and |E| = m edges. Note that
E CV xV defines a relation between the vertices. Let deg(v) denote the degree
of v, i.e., the number of edges that v is contained in. Every vertex w with which
v is connected by an edge e = (v, w) is called a neighbor of v. Let Pg(z,y) denote
a path in G, i.e., a set of edges {e; = (x,21),e2 = (1, 22),...,ex(Tr—1,y)}. The
length of a path is defined as the number of edges in it. The distance dg(z,y)
between two vertices in G is defined as the minimal length of any path between
them. If there is no such path, it is oo by definition. A graph G’ = (E', V') is
called a subgraph of G if V' C V and E' C E. A graph is called connected if
there is a path between any two vertices. A subgraph G’ of G is called spanning
if it is a connected graph on all vertices of V' (but does not necessarily contain
all its edges).

In the G(n,p) model, every of the n(n — 1)/2 possible edges between n
vertices is existent with probability p. In any given graph G with n vertices and
m edges, it is easy to compute the so—called edge density p(G) of G, defined
as 2m/(n(n — 1)). A random graph G(n,p) with p = p(H) will then show
approximately the same number of edges as H.

3 Locality in graphs

Our perception of the world is that our relationships to other persons or things
are the more probable the nearer they are to us. This distance can be either
interpreted in a purely geographical sense or in a more abstract way in a space
defined by characteristics. Certainly, a network that is generated in a way where
near things are more likely to be connected than distant ones will be perceived
as a local graph. We will formalize this intuitive understanding:

Definition 3.1 (A first model of Locality) Let O be a set of objects for
which a distance measure d : O x O — RT is defined. A graph on O is de-
fined to be local, if P(e = (x,y)) is inversely proportional to some monotonically
increasing function of d(e = (x,y)). P(e) is called a local network generating
process on O.

Example 3.1 With this definition we exclude random graphs from the set of
local graphs since here P(e) = p for all possible edges, independent of d(e).

As a shorthand we will use the term d(e) to denote the distance between e’s
endpoints. Thus, given an embedding of some objects and a network between
them, it is easy to check whether local edges are preferred over global edges.
It has been shown for some real-world networks that indeed local edges are
preferred:



local real-
1. Gastner and Newman could show that in the design of commuter trans- world net-
port networks and sewage systems an intricate balance between the total ~works
geometric edge length and the travel time from any vertex to a center ver-
tex along the network paths is achieved [15]. Moreover, in the networks
they analyzed the total geometric edge length came close to the total edge
length in the minimal spanning tree of the network, implying that every
vertex prefers to be attached by its shortest edge to the growing network.

2. A second example is given by Frenken and van Oort who reviewed liter-
ature on the ’geometry of innovation’ [13]. They summarize the findings
described in the literature, and state that knowledge production and in-
novation are mainly achieved by groups whose members live in the same
region. Additionally, they conducted a co-authorship analysis with respect
to the affiliations of the authors. Two co-authors were considered to have
a ‘regional’ cooperation if their affiliation lies in the same state. With
this technique, they analyzed publications in two quite different scientific
fields, namely ’aerospace engineering’ and ’biotechnology and applied mi-
crobiology’. Their result is that scientific cooperations tend to be regional,
although the trend has decreased in the last years due to cheaper com-
munication, and that collaborations between academic and non-academic
groups are more often regional than pure academic research.

3. Another interesting finding has been achieved by Yook, Jeong, and Barabasi
on the locality of the Internet, described on the level of routers and au-
tonomous systems (AS) [40]. The authors used data collected by Govindan
and Tangmunarunkit that mapped AS addresses to physical locations [17],
and measured the probability P(e) that edge e exists as a function of e’s ge-
ometrical length d(e). Their results clearly show that P(e) is proportional
to 1/d. They explain this result with the costs of installing a physical link
between routers that is assumed to be mainly growing linearly with its
length.

4. Analyzing the email-contact network of a large company, Adamic and
Adar found out that the probability that two persons had email contact
(i.e., at least 6 emails) was proportional to e~%-92" where h denotes their
distance in the hierarchy [1].

For many other real-world networks that exist between vertices with a fixed
position it can be assumed with high certainty that most edges are local if the
cost of building an edge is proportional to their distance. This argument is
certainly valid for wires, tracks, streets, and also social relationships, although
to a lesser extent as anyone can verify from his or her own acquaintanceship
network.

Although preference of local edges seems to be settled for the above given
networks, there are still classes of interesting networks out there where no dis-
tance function between the objects is readily available. We want to illustrate
this important point with some examples:
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1. A protein-protein interaction network represents the proteins of an organ-
ism by vertices, and two vertices are connected by an edge if the repre-
sented proteins interact biologically with each other. Since proteins often
exert their function in the cell in tightly packed conglomerates, the under-
standing of protein—protein interaction networks is an important step to
understand the time and space dependent functionality of cells. We will
now explain why they are considered to be local graphs. It is assumed
that these networks have at least partly evolved by duplicating certain
parts of the genetic code that encodes proteins. Normally, the genetic
code of a functional and vital protein is not allowed to change by much
without losing its functionality. But if the code is duplicated, the genetic
code of one copy can be mutated without harming the functionality of the
original. Thereby the mutated protein may possibly lose some structural
properties and gain others [30]. It might also interact with the original it-
self. This mechanism has been transformed into a dynamic network model
that results in networks that are quite similar to the real ones, a good in-
dication that the model captures the essential network generating process
[37, 38]. If this mechanism models the evolution of protein-protein inter-
action correctly, then it is clear that at least some nearby proteins in the
protein-protein interaction network are also similar to each other, e.g., on
the level of their amino—acid sequence or their 3D structure. Under this
model, we can assume a certain degree of locality in these networks. Still,
the similarity of proteins is not unambiguously defined; measures range
from similarity of the structure, to similarity of the amino-acid sequence
they are made of, to the similarity of their function in the cell. This makes
it very difficult to position proteins in any metric space or to define a co-
herent metric distance function between any two proteins such that all of
these different similarities are captured.

2. We have a similar problem in metabolic networks. Here, all the small
molecules produced by the set of enzymes of an organism are represented
by vertices, and two vertices are connected if an enzyme catalyzes the
transformation of one molecule into the other [12, 18]. Because the one
is made of the other, it is clear that they share at least some structural
properties and thus, metabolites with a low distance in this network can
also be assumed to be structurally similar. And on the other hand, if two
metabolites are very dissimilar than it is unlikely that a small number of
enzyme catalyzed steps will transform the one into the other. Nonetheless,
here it is also highly difficult to denote a metric distance function that
captures the similarity between all pairs of metabolites.

3. Krebs [22] and Clauset [8] discuss co-purchasing networks of books where
books sold by Amazon are represented by vertices. On the Amazon sites,
every item’s page contains links under the title: ’customers who bought
this book also bought’. In a co-purchasing network two vertices are con-



nected by a (directed) edge if these links point from the one book to the
other. As Clauset has shown in his article, a clustering of these networks
reveals subgraphs consisting of very similar books, implying that edges are
more likely between similar books. But—as can be seen in the comparison
between any two libraries—there is no such thing as a unique categoriza-
tion of books, and we know of no coherent quantitative measure that has
been proposed to judge the similarity of two books.

4. As a last example we want to note the web’s link structure [6, 2], modeled
by networks where websites are represented as vertices and two vertices
are connected by a (directed) edge if the one links to the other. Many
algorithms have been proposed to harness this network structure to find
those pages that are related to each other and to a given query, and their
success is, without a doubt, amazing [5, 19, 24, 31]. We can thus safely
assume that in this network those pages that are similar by content are
also near each other in the network and that those pages that are near
each other in the network are similar!. Still, it seems to be impossible
to give a precise, metric distance function that quantifies the semantic
similarity between any two websites.

In summary, there are many interesting real-world networks without a (known)

embedding of the objects in character space but where the evolution of the net-
work supports the assumption that most edges are between near or similar
objects.

We will now analyze a couple of approaches to measure localness in graphs
that rely only on structural information, i.e., on the adjacency matrix of a
network. By abstracting the common properties of the measures proposed so
far we will check whether the above given Definition 3.1 is sufficient to describe
local graphs or needs refinement. The first approach to measure localness or the
so—called ’cliquishness of a typical neighborhood (a local property)’[39] was the
clustering coefficient cc(v) of a vertex:

_ 2e(v)
deg(v) = (deg(v) — 1)

where e(v) denotes the number of edges between neighbors of v. In other words,
the clustering coefficient gives the probability that any two neighbors of v are
connected by an edge themselves. In a random graph G(n,p) this clustering
coefficient is expectedly p (their edge density), but in real-world networks it
is often magnitudes higher than expected by their edge density. It is intuitive
that, if edges are more likely to occur between near objects that then any two
neighbors of a vertex are also near to each other - and maybe near enough to
make an edge between them likely. But still, there are many networks that are
perceived as 'local graphs’ that do not show a high clustering coefficient, e.g.,
grids or bipartite graphs. Thus, the idea of a clustering coefficient to measure

(1)

ce(v)

1 Although there might exist different groups of websites concerning the same topic, e.g., if
they are in different languages.
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locality has been generalized in many ways, e.g., to counting the number of four-
cycles in the neighborhood of a graph and comparing it with possible number
of these structures [36]. Another approach is to define locality in the terms
of alternative paths, i.e., an edge is considered to be local if there are at least
k edge disjoint alternative paths of length at most [, as proposed by [3, 4].
Unfortunately, this measure is N P-hard to compute (i.e., not feasible) for any
k > 4. Nonetheless, these measures have in common that they expect a local
graph to be one that is transitive in the following way: If a, b are connected, we
assume they are near to each other. If now b, ¢ is also connected, we expect b is
also near to ¢ and that thus a cannot be too far away from c also (which might
be near enough to make another edge probable).

Coming back to Definition 3.1, it can be noticed that this kind of transitivity
is not explicitly required in the distance measure itself.

Example 3.2 Consider the following example: let P(e) be d(e)™!, i.e., directly
proportional to the inverse of the distance. This is certainly a local network
generating process. Let now the distances between any two pairs of nodes be
either 1 or oo. It follows, that all edges between pairs of vertices with distance 1
are in the graph and no edges between pairs of vertices with distance co. If such
an embedding or distance measure is where we find the vertices in, it might be
that the resulting network does not show any clusters: Let G(n,p) be a random
graph and let it be embedded s.t. d(v,w) = 1 iff (v,w) € E and d(v,w) = oo,
else. Although now the random graph can be considered to be local with respect
to the given embedding, it is certainly not meaningfully clusterable.

This shows that we have to make requirements with respect to the embedding
of the objects in character space. If the objects do not cluster in the full character
space, i.e., if there are no discernible groups of objects that are more similar to
each other than to other objects, also the local network generated out of this
embedding will not be clusterable. We think that the following type of networks
belongs to this group:

Example 3.3 A (simple) word adjacency graph (waG) is based one or more
pieces of literature where the words are represented by vertices and two vertices
are connected if the corresponding words are next to each other in at least one
sentence. Is it useful to apply a clustering algorithm to this network, i.e., will
we find groups of densely connected words? We define d(wy,ws), the distance
between any two words wy,ws, to be (#Fadj(wy,ws))~ where #adj(wy,ws) de-
notes the number of times they are standing next to each other in the given text
(and d(wi,wz) = oo if #adj(wy,we) = 0). Then, we define P(e) = d(e)~*.
The problem with this embedding is that it is not likely to produce groups of
words that are similar to each other with respect to this distance measure, i.e.,
if d(wy,we) = x&d(we,ws) =y it is likely that d(wy,w3) > x+y. The sentence
"In the beginning...” makes two pairs of words (in/the, the/beginning), and cer-
tainly the pair (in/the) will be found very often but still it is unlikely to find
(in/beginning) somewhere in the text.



Thus, the network shadows a character space that is not likely to contain many
groups of objects with a certain, pairwise similarity. The problem with the
Definition 3.1 is that it allows any kind of distance measure. We will thus
sharpen the definition by requiring the distance measure d : O x O — R* to
obey the triangle equality?. By furthermore requiring a symmetric distance
measure, i.e., d(z,y) = d(y, x), we are in other words requiring the following:

Definition 3.2 (Local Network Generating Process) Let O be a set of 0b-
jects embedded in a metric space S, i.e., there exists a distance measure d : O x O
such that

Then Pg is a local network generating process in S if it produces a relation
E(P(e)) € OxO such that the probability P(e) that an edge e exists is inversely
proportional to some monotonically increasing function f(d(e)) of the distance
between its endpoints.

A graph G = (O, E(Ps(e)) is called a local graph.

It is a very important observation that we require certain conditions on both
sides of a network generating process, in the object/character space and the
network. We require that the similarity measure is at least in a way transitive
and we require that the more similar two objects are, the higher the probability
that they are connected by an edge in the network.

Although this sounds like a very reasonable model, it will need even stronger
constraints to make the application of clustering algorithms possible:

Example 3.4 Suppose that the objects O are distributed in a way such that
the number of objects with distance d to v is described by N,(d). If then
limg 00 Ny(d)/ f(d) is larger than a constant, i.e., if N, grows asymptotically
as least as fast or faster than f(d), there will be the same number or even
absolutely more edges to distant objects than to near objects. An example for
this is the Internet: as cited above, Yook et al. showed that a link between two
routers in distance d is proportional to 1/d. Since routers are distributed over
a two-dimensional area it can be expected that N, (d) is roughly proportional to
d. This implies that f(d) and N(d) are both linear in d, i.e., their ratio is some
constant c. This approximation implies that v is connected to a constant num-
ber ¢ of routers in every distance d. Thus, picking any edge e of the Internet
graph, it has the same probability to connect two servers in distance di or ds for
all possible distances! This approximative calculation implies that a clustering

2Note that the choice of the triangle equality is not the only possible way to ensure tran-
sitivity, but a natural one in many settings.
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algorithm will not be able to find groups of servers that are in the same geo-
graphical area since an edge does not imply geographical nearness between the
servers.

We will thus introduce the following two definitions to classify local graphs:

Definition 3.3 1. A graph is called strongly local if — given any edge of the
graph — it is more or at least as likely that the connected vertices are in
distance d than in distance d’ for all distances d < d'.

2. A graph is called weakly local if two vertices in distance d are more likely
to be connected than two vertices in distance d' for all distances d < d'.

Although both definitions sound very similar, the important difference be-
tween them is that in a strongly local graph absolutely more edges are local
than distant. In a weakly local graph the probability of all short edges to exist
is higher than that of long edges - but if there are many more long edges than
short ones there could be absolutely more long edges than short ones. Now, it
becomes clear that we do not only require locality for a graph to show a mean-
ingful clustering. In order to apply a clustering algorithm to a given real-world
network, we should have reasonable hopes that the given graph is strongly local,
i.e., that most of the edges in the graph are between near or similar vertices. In
a weakly local graph that is not strongly local most of the edges will be between
distanct vertices just because there are more possible edges with a long distance
between the objects.

A last problem can come up when the network is strongly local with respect
to some character space but its clustering results are interpreted with respect
to another one:

Example 3.5 Proteins can be in various relationships, e.g., they can interact
with each other, they can have a similar gene sequence, they can be produced un-
der the same circumstance, etc. Fach of these relations gives rise to a network
that can be clustered. One of the most important questions in protein chemistry
18 that of annotation, i.e., what function the protein has. Thus, the character
space that should be explored is that of functionality, and two proteins can be
called similar if they have a similar function in the cell. The question is now
which of the relations cited above shadows this character space best. At the mo-
ment, results of protein-protein-interaction networks seem to be quite promising
[32] but the predictions will have to be tested in the laboratory.

4 Discussion

In this article we have discussed a general model of when clustering algorithms
can be applied to networks. We have introduced a Platonic model that de-
scribes the relationship between the ideal character space in which objects are
embedded and a network between them. We have argued, that networks are
only (meaningfully) clusterable if the embedding in space allows for groups of
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objects that are pairwise more similar to each other than with other objects.
We have further argued that the network generating process must be strongly
local such that most edges in the resulting networks are between objects that
are similar in the character space that is to be explored.

In summary, before a clustering algorithms is applied to a real-world network

it should be checked that the following four conditions are satisfied:

1. The network generating process that transforms the character space into

a network is local (Example 3.2).

The embedding of the objects in the underlying character space is likely
to give rise to clusters, i.e., it can be expected that there are groups of
objects that are pairwise more similar to each other than to other objects
(Example 3.3.

Moreover, it can be expected that the network generating process is strongly
local, i.e., an edge in the network is likely to signify similarity between the
objects (Example 3.4).

4. The network shadows the intended character space (Example 3.5.
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