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Abstract—Many relationships naturally come in a bipartite
setting: authors that write articles, proteins that interact with
genes, or customers that buy, rent or rate products. Often we
are interested in the clustering behavior of one side of the graph,
i.e., in �nding groups of similar articles or products. To �nd
these clusters, a one-mode projection is classically applied, which
results in a normal graph that can then be clustered by various
methods. For data with strongly skewed degree distributions, a
classical one-mode projection leads to very dense graphs with
little information. In this article we propose a new method for a
meaningful one-mode projection of any kind of bipartite graph
B to a sparse general graphG, using a modi�ed version of
the so-calledleverage. We provide ample experimental evidence
that the method creates edges inG only between statistically
signi�cant neighbors and that the results are reliable and stable.
For this, we present an output sensitive algorithm to compute
Kendall's � . Moreover, for a subset of �lms in the Net�ix prize
data set, we can prove that the proposed method not only detects
the statistically signi�cantly co-rented �lms in the data set but
that these are also the �lms that are the most similar ones by
content. Thus, our method cannot only be used for the one-mode
projection of bipartite graphs in general but also especially for
any kind of market basket data to �nd pairs of most similar
products as needed for, e.g., recommendation systems.

I. I NTRODUCTION

The clustering of graphs is one of the most useful theoretical
approaches in the �eld of network analysis. It helps to reduce
information, to predict the behavior of less well-known objects
by grouping them with better known objects and to �nd
groups of similar objects, e.g., for recommendation systems.
For general graphs, there are many methods of clustering that
have been successfully applied to various data sets [4], [8].
But many data sets come in the form of so-called bipartite
graphs, i.e., they describe the relationship between objects of
different types. A famous data set in this realm is the Net�ix
competition data set, consisting of 100 million ratings of �lms
given by users. Each rating is determined by one user ID, a
�lm ID, and the rating (a number between1 and5). The Net�ix
competition asked to build a recommendation system that beats
the company's own system. A �rst approach is to �nd which
�lms are similar to each other, by using the information of
how often two �lms were rented (and rated) by the same user.

The idea behind this approach is that if many users view both
�lms, these �lms might be similar to each other.

The most common way to deal with such a bipartite graph
of which one side is of main interest, is to turn it into a
general graph by a so-called 'one-mode projection'. For this,
two objects from the same side are connected if they share
neighbors on the other side. The easiest approach is to connect
them if they share at least one neighbor. Concerning the Net�ix
data set, this implies that if a user has rentedk �lms in
total, this will cause allk �lms to be connected to each
other. Unfortunately, the degree distribution of the usershas
a very long tail where one user saw almost all �lms, while a
second user saw approximately14; 000out of 17; 770�lms. A
classical one-mode projection would thus result in a network
of �lms where almost every �lm is connected to every other
�lm. Another approach is to weight the edges by the number
of times they have been co-rented, either directly or by a more
complicated scheme as proposed by Newman [11]: for each
article that two authors wrote together in a group ofk authors
in total, the weight of the link between them is increased by

1
k � 1 .

This still leaves us with the problem that the weights can
have very different meanings if the objects have a degree
distribution with a long tail. This is the case for most real-
world data, i.e., some authors write a lot of papers while
most write only a few, and some �lms are rented by50%
of all users while most are rented by only a few percent. It
is thus more signi�cant that the �lm “VeggieTales: Duke and
the Great Pie War”, which itself was only rented40 times in a
set of 10; 000 customers, is co-rented23 times together with
“VeggieTales: Lyle the Kindly Viking” (itself rented73 times),
while even 1197 co-rentings of the �lms “Pretty Woman”
(4080rentals) and “Star Wars: Episode V: The Empire Strikes
Back” (1930 rentals) are insigni�cant because both �lms are
so highly popular. Thus, the question is: given the degrees of
two objects on one side of a bipartite graph and the number of
shared neighbors on the other side, called theirco-occurrence,
is it signi�cant? And furthermore: if, given one objecto1,
we rank the other objectso2 by the signi�cance of their co-
occurrence, will the most highly ranked objects also be the



ones most similar too1 by any intuitive measure? This general
question is not only of interest for �lms and customers but for
any kind of bipartite data set in which a relationship between
elements from the two sets can occur at most once. Examples
for other data sets of this form are proteins and their biological
function, authors and articles [11], Darwinian �nches and their
preferred islands [5], or ratings from customers of products in
a forum.

In this article we use a classical network analytic approach
to assess the signi�cance of a given co-occurrence by compar-
ing it with its expected value in a suitable random graph model.
The article shows how to evaluate this information to de�ne
a sparse one-mode projection with onlyO(n) edges from any
bipartite graph. As a side result we present anO(n + out)
algorithm for computing Kendall's� , a rank correlation co-
ef�cient, which signi�cantly improves the runtime compared
with the classicalO(n logn) algorithm in those data sets in
which the rankings are expected to be almost the same.

The paper is organized as follows: Section II introduces
basic terms and models. Section III de�nes the random graph
model by which the signi�cance of a given co-occurrence
is tested. Section IV applies the method to various samples
from the Net�ix data set. The �ndings are then discussed in
Section V.

II. D EFINITIONS

A graph is composed of a set of nodesV with n = jV j the
number of nodes, and a set of edgesE � V � V with m = jE j
the number of edges. If the node set can be partitioned into
two setsV0 andV1 such that all edgese = ( v; w) are between
nodesv 2 V0 andw 2 V1, and none between nodes from the
same setVi , the graph is said to bebipartite. In the following,
all graphs will only contain simple edges, i.e., no two edges
contain the same pair of nodes, and no sel�oops. For any two
nodesv; w from the same setVi , we de�ne theco-occurrence
coocc(v; w) as the number of nodesz in the other set such
that (v; z) and (w; z) 2 E . The degreedeg(v) of any node
is de�ned as the number of edges it is contained in, i.e., the
number of neighbors it has. Given some �xed order of the
vertices inV0 and V1, we de�ne thedegree sequenceL and
R of the graph as the sequence of the degrees ofV0; V1.

In general, any method that turns a bipartite graphB =
(V0 [ V1; E ) into a graphG(Vi ; E 0) on one of the two nodes
setVi , i.e., aone-mode projection, consists of �rst computing
some weight between all pairs of nodes inVi by de�ning a
similarity measures : Vi � Vi ! R. The according matrix
can be turned into an adjacency matrix in multiple ways,
e.g., by creating an edge between all nodes with at least a
given threshold similarity, by connecting each node with the
k neighbors with highest similarity to it, or by simply using the
similarity as a weight for a weighted graph. In the following
we will propose a new similarity measure for nodes in one
side of a bipartite graph and experimentally assess its validity
and quality.

III. M ODELS AND METHODS

Using a classical network analytic approach for evaluating
the signi�cance of a structural graph measure, we compare
the co-occurrence of any two �lms with itsexpected value.
Since the �lm-user scenario resembles data sets frommarket
basket analysis, we use the modi�ed version of a so-called
interesting measurefrom that area. Market basket analysis
tries to deduce rules of the formX � > Y denoting that
if X is bought, there is a signi�cant probability thatY
is bought as well. In market basket analysis, thesupport
supp(X ) of a product or subset of productsX is de�ned as
the frequency with which it is bought (together). IfX contains
only one �lm v, supp(X ) := deg(v)=r, where r denotes
the number of baskets (users); ifX contains two �lmsv; w,
supp(v; w) := coocc(v; w)=r. The leverageis then de�ned
as the difference betweensupp(v; w) and its expected value.
In its original de�nition by Piatetsky-Shapiro, the expected
value was assumed to be given bysupp(v) � supp(w) [13].
The underlying simple model assumes that if �lmv is rented
by 30% of all customers and �lmw by 70%, both �lms
are expected to be rented by21% if they are unrelated.
This simple independence model (SIM) thus assumes that
all customers rent each �lmv with the same probability
deg(v)=r. In the limit of a large number of �lms, this leads to
a degree distribution of the customers that expectedly follows a
Poissonian distribution. Although this sounds like a reasonable
random model, it can be quickly seen that it is not suitable
for those data sets that have a customer-degree sequence with
a long tail (skewed degree distribution) [14]. Since most real-
world graphs show a strongly skewed degree distribution [2],
SIM should not be used to assess the expected co-occurrence
or the expected support in these cases: rather, as discussed
by Gionis et al. [7] and theoretically analyzed by Zweig
and Kaufmann [14], the expected co-occurrence should be
assessed in the�xed degree sequence model(FDSM): given a
graphG = ( V = f V0; V1g; E) and the corresponding degree
sequencesL and R, we de�ne G(L; R ) as the set of all
bipartite graphs with the same degree sequences (and no multi-
edges). The expected co-occurrence (expected support) is then
de�ned as the average co-occurrence (support) over all graphs
in G(L; R ). Since the cardinality of this set is enormous even
for bipartite graphs of moderate size [3], [6], it is in general not
possible to enumerate all graphs fromG(L; R ). Fortunately, it
is possible to sample fromG(L; R ) with a simple random walk
procedure: starting from a graph inG(L; R ), in each step two
edges(v; w) and (x; y) are drawn uniformly at random from
the set of all edges. If a swap of the target nodes of these
two edges does not lead to a multi-edge, i.e., if neither(v; y)
nor (x; w) is already inE , (v; w) and (x; y) are replaced by
(v; y) and(x; w). Note that this swap operation maintains the
degrees of all affected nodes and thus the resulting graph is
also inG(L; R ). Note that the original bipartite graph, which
is itself in G(L; R ), can be used as a simple starting point for
the random walk. After a suf�cient number of random walk
steps, the procedure is guaranteed to end at each of the graphs



in G(L; R ) with the same probability [5]. Sampling a suf�cient
number of graphs in this way and averaging over the co-
occurrences of interest in them will then give an approximation
of the value of the expected co-occurrence inG(L; R ). This
approximated value will be denoted bycooccF DSM (v; w). The
modi�ed version of the leverage is then given by:

leverageF DSM (v; w) = coocc(v; w) � cooccF DSM (v; w):
(1)

This de�nes a similarity measure on the set of all pairs of
nodes from one side and can be computed by the following
steps:

1) Based on the given data set and its graph representation
G = ( V0 [ V1; E ), computecoocc(v; w) for each pair of
nodes on the side of interest.

2) Based on the given data set, compute the degree se-
quencesL andR.

3) Sample a large setH of graphs fromG(L; R ) in the
following way:

a) Start fromG which itself is obviously inG(L; R ).
b) Fix a number of random walk steps to be per-

formed, e.g.,m logm.
c) Perform this number of random walk steps, where

each step consists of choosing two edges at ran-
dom, check whether they can be swapped and swap
them if possible. A non-swappable pair of edges
needs to be counted as a random walk step to
assure that the random walk stops at each graph
with the same probability.

d) Let G0 be the graph fromG(L; R ) resulting from
the random walk procedure. For each pair of nodes
on the side of interest compute the co-occurrence
and store it.

4) For each pair of nodes on the side of interest, average
over the observed co-occurrences in the sampled random
graphs, denoted bycooccF DSM (v; w).

5) For each pair of nodesv; w on the side of in-
terest, computeleverageF DSM (v; w). Store triples
v; w; leverageF DSM (v; w) in one global list GL or
store pairsw; leverageF DSM (v; w) in one list local
LL (v) for each nodev.

6) Sort list(s) non-increasingly by value.
Note that the neccessary length of the random walk to

guarantee a uniform sampling fromG(L; R ) is not known.
However, in most real-world data sets there are many nodes
with the same degree which provides for an internal check: the
observed co-occurrence valuecooccF DSM (v; w) only depends
on the degrees ofv andw. This implies that every pair of nodes
(v; w) and(x; y) with the same degreesdeg(v) = deg(x) and
deg(w) = deg(y) should have the samecooccF DSM (v; w)
value. By �xing some nodev and plottingcooccF DSM (v; w)
against the degree ofw on the x-axis all values for �lmsw; w0

with deg(w) = deg(w0) should fall on top of each other. As
long as the variance of these values is too high, either the
length of the random walk or the number of sampled graphs
has to be increased.

As described above, the proposed modi�ed leverage
leverageF DSM (v; w) de�nes a similarity measure between
all pairs of objects on one side of the graph. As with other
similarity data, this can be turned into a sparse graph in many
ways: It can either be created from the bestO(n) triples
from the global listL G or by connecting each nodev to
the nodes from thek highest-valued pairs in its local list
L (v). Note that these edges are directed in the sense that
v might �nd that w belongs to itsk closest neighbors but
not vice versa. By de�nition, both methods produce a sparse
one-mode projection from any given data set. But of course
the quality of this projection depends heavily on the quality of
the similarity measure, the modi�ed leverageleverageF DSM .
In the following we will describe how the quality of such a
similarity measure can be assessed in general, and apply the
methods to the modi�ed leverage measure in particular.

A. Quality assessment

The main idea of our one-mode projection procedure is
to create a sparse graph from a bipartite graph that can
then be clustered by any reasonable clustering algorithm.
In order to make the projection useful for clustering, most
nodes (representing one object from the data set) should only
be connected to nodes which represent similar objects. The
proposed modi�ed leverage assumes that the co-occurrence of
two objects not only tells us about which �lms will be co-
rented together or which authors are most likely to produce
another article together, but also whether the �lms are similar
by content and whether the authors of an article share some
scienti�c interest. We conjecture that the modi�ed leverage
not only reliably picks the objects that co-occur signi�cantly
often in a stable and reliable way, but also that if we connect
each object to the objects with which it most signi�cantly co-
occurrs, these objects are also similar by content.

A general problem in the judgement of such a conjecture
is that we seldomly have something like aground truthwith
which we can compare our results. Luckily, the Net�ix prize
data set [9] provides at least some possibilities to check
the validity of the method. The data set consists of100
million customer ratings of17; 770 �lms. There are over
480; 000distinct customers, identi�ed by an ID between1 and
2; 600; 000. The degree distributions of customers and �lms
are both highly skewed. For each rating event, the customer
ID, the �lm ID and the rating from 1 to 5 ('very bad' to 'very
good') is presented. Additionally, a second �le assigns to each
�lm ID the �lm's title and its publishing year. The data allows
for different quality assessment techniques:

1) Since the data set is so large, it can be partitioned into
smaller data sets and if the method is stable, all of the
data sets should give rise to very similar rankings inL G

andL(v).
2) We expect that rankings of high-degree nodes should be

even more stable than those of low-degree nodes.
3) For �lms that are part of a series we expect that their

best ranked neighbors are other parts in the same series



and that all parts of the series are among the best ranked
neighbors.

To analyze the stability of the given rankings, we used
smaller samples from the data set. We computed20 data
samplesDS1 to DS20, composed of all ratings of10; 000
users, each. The �rst data set contains the ratings of the
10; 000 users with lowest IDs, the second all ratings of the
next 10; 000 users, and so on. For each sample, we computed
the 1; 000 pairs of �lms with globally highest leverage in a
list, denoted byGL(DS i ). Since the leverage favors �lms
with a high degree, we also computed for every data sample
DS i and every �lm v a local list LL (DS i ; v) containg its
up to 100 best neigbhorsw sorted by their modi�ed leverage
leverageF DSM (v; w). To ease understanding, in the follow-
ing the termleveragewill be used to signify the modi�ed
leverage as proposed above andleverage(v; w) is understood
as leverageF DSM (v; w) in the F DSM model.

If the leverage of any two �lmsv; w is negative, this
implies that they co-occur less often than expected, so we
disregard neighbors with a negative leverage. Both,GL(DS i )
andLL (DS i ; v) give rankings. To compare rankings between
different data samples, one can compute the percentage of
objects that are listed in both rankings. To moreover quantify
the order in which the commonly listed objects are given, a
rank correlation coef�cientlike Kendall's � is needed, which
will be described in the following.

B. Validating the Ranking of a Given Similarity Measure

To assess the stability of rankings given by some similarity
measure like the leverage, Kendall's� is a useful rank
correlation coef�cient[10]. An easier formulation was given
by Abdi on which we rely here [1]. In its basic form it
quanti�es the correlation between two rankings on the same
set of n objects, denoted by numbers of1 to n. Given
one ranking, which is w.l.o.g. represented by the sequence
1; 2; 3; : : : ; n, the second ranking is then a simple permutation
of these numbers. We will denote this second ranking by
a function �( y) that gives the value on thex-th place in
the second ranking. Vice versa,� (x) denotes which place
the x-th element of the �rst ranking has in the second
ranking. E.g., let[5; 3; 4; 2; 1] be the second ranking, then
�(1) = 5 ; �(2) = 3 ; �(3) = 4 ; �(4) = 2 ; �(5) = 1 and
� (1) = 5 ; � (2) = 4 ; � (3) = 2 ; � (4) = 3 , and � (5) = 1 . To
quantify the correlation between the two rankings, all ordered
pairs of numbers in the second ranking are observed, i.e.,
(5; 3); (5; 4); (5; 2); (5; 1); (3; 4); (3; 2); (3; 1); (4; 2); (4; 1),
and(2; 1). A higher number followed by a smaller means that
the respective objects had a different order in the �rst ranking.
A pair (x; y) with x > y is called adiscordant pair, and
the number of discordant pair of a ranking� is denoted by
D(�) . Kendalls' � is then de�ned as1� (4�D (�) =(n(n � 1))
where n is the length of the ranking. It takes on values in
[� 1; 1], where the extremes result for a reversed ranking
(� = � 1) and the same ranking (� = 1 ). For the above given
example, Kendall's� is thus1 � 18=10 = � 0:8. Note that a
slight change in the de�nition to� = 1 � 2� D (�) =(n(n � 1))

equals the probability that any two pair of objects drawn
u.a.r. have the same ordering in both rankings.

The main problem in computing Kendall's� and its close
cousin � is to determineD(�) . A naive implementation to
computeD(�) has a runtime ofO(n2) by checking every
single pair. An improved algorithm with runtimeO(n logn)
was given by Newson [12]. However, in this special setting
we expect the number of discordant pairs to be rather low. We
will show that in this case, there is a more ef�cient algorithm
to compute Kendall's� that has a runtime ofO(n + D(�)) ,
i.e., it is linear in the size of the ranking and bounded by above
from the number of discordant pairs in the given permutation
� .

The algorithm walks through the second ranking� and
keeps two lists: After processing thei -th rank,Biggercontains
all values�( i ) > i , i.e., those values in the rank that came
earlier than in the �rst ranking, andSmallercontains all values
i with � (i ) > i , i.e., those values that are still missing. The
values inBiggerhave the same order as in� and the values in
Smallerare sorted in increasing order. With the help of these
two lists, we count the number of discordant pairs. In essence,
all elements inBigger make for one discordant pair with each
of the elements inSmaller. The algorithm guarantees that after
the i -th rank is processed, all discordant pairs with(x; y) are
accounted for, wherey � i and � (x) < i . The detailed proof
is omitted due to space restrictions.

The runtime is inO(n) because each position is evaluated
once. Whenever an element needs to be removed fromBigger
or Smaller , the whole list might have to be traversed. Since
every traversal in these lists stands for one discordant pair,
the total runtime is bounded byO(n + D(�)) . In the worst
case, i.e., a reverted ranking� = [ n; � � � ; 3; 2; 1], the runtime
is in 
( n2). With this rank correlation coef�cient, the different
global and local rankings in the20 data samples created from
the Net�ix data set can now be assessed.

IV. EXPERIMENTAL RESULTS

In the following we will �rst describe experimental results
on the stability of the speci�c global and local rankings in the
20 data samples. After that we will de�ne a subset of �lms
where the best recommendations are known and quantify how
well the method agrees with them.

A. Global rankings

For every of the20 data samplesDS i we computed the
1; 000 pairs of �lms v; w with highest leverage. Note that
out of the possible more than157; 000; 000 distinct pairs
of �lms, the best ranked1000 �lms are less than0:0007%.
Already a very simple quality measure, which counts the
number of common pairs of �lms for all data sets, reveals
that the global rankings show a high overlap: restricted to the
10 highest-ranked pairs, all20 (!) data samples list exactly the
same pairs of �lms. These10 pairs of �lms are displayed in
Table I1. Interestingly, these pairs give rise to three distinct

1Note that the order was chosen for displaying reasons - none of the data
samples directly showed them in this order.
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3-cliques and one single pair of �lms, and all �lms in the
same component are obviously highly related: All Lord-of-
the-Rings sequels are connected to each other, once in the
normal cut and once in the extended version - but there is
not yet a connection between the two components. Similarly,
Star Wars EpisodeIV to V I are all pairwise related and thus
build a triangle. The last pair makes a connection between
both volumes ofKillBill .

If more than the �rst 10 rankings are considered, the
percentage of common pairs drops, as depicted in Fig. 1. But
interestingly, the percentage of pairwise common pairs of �lms
listed under the �rstk rankings seems to stabilize around85%.
As sketched above, this percentage is considerable compared
with the enormous number of possible pairs of �lms in the
data set. If we compute for eachk the pairs of �lms that are
listed under thek highest-ranked pairs inall 20 data samples
(maximal consensus), this percentage seems to stabilize around
57:5%. I.e., given anyk, all data samples agree on around57%
pairs of �lms.

In the following, we restrict the rankings in each data set
to the consensus pairs for a givenk and compute Kendall's�
and � . W.l.o.g., we set the ranking of the consensus pairs in
the �rst data sample as reference, and compare the rankings of
all other data samples against it. Fig. 2(a) shows that for the
10 highest ranked pairs (on which all data samples agree),
Kendall's � is on average0:90, i.e., on average there are
only 2 or 3 discordant pairs. Again, for higherk � drops
but seems to stabilize around0:69. Note that the expected
Kendall's � is approximately normally distributed around0
with a variance of� 2

� = 2(2N + 5) =(9 � N � (N � 1)), with
a satisfactory approximation forN > 10 [1]. � 's signi�cance
can thus be tested by computingZ � = �=� � , which denotes
how many standard deviations the given� value is away from
the mean. ComputingZ � for the average� -values reveals that
Z � increases from4:4 for k = 20 to 24:5 (k = 1000) and is
thus highly signi�cant (s. Fig. 2(b)).
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Fig. 2. Assessment of global rank correlation. (a) Average rank correlation
(Kendall's � ) between �rst data sample and all other data samples with respect
to thek �rst rankings. (b)Z � as de�ned in the text.

B. Local Ranking

The last section showed strong evidence that the globally
best pairs can reliably be found in quite small data samples
of 10; 000 users each. But of course, we are also interested in
whether the method picks reliable recommendations for each
single �lm. In the following we will show that the method
can detect those objects of the data set for which the statistics
is too poor to give any kind of recommendation. We think
that this is a major advantage of the method, since giving
no recommendation might be better than giving some random
recommendation. For all other objects, the local rankings are
similarly stable and reliable as the global ranking.

To assess the question for the validity of local rankings,
we computed for each �lmv in each of the20 data sets
up to 100 other �lms w with highest leverage(v; w). We
restrict them to thosew with leverage(v; w) > 10, i.e.,
we require that at least10 more customers than expected
rented these two �lms together. Letlev10(v) denote the set
of other �lms w with leverage(v; w) > 10 in the given
data set. For data sample1, only 6931 out of 17770 �lms
v have at least one neighbor inlev10(v). Then, analogously
to the global rankings, we computed for each �lmv the
consensus set of recommendations for all20 data sets. If
the consensus setjcons(v)j > 2, we computed the average



Lord of the Rings: The Two Towers Lord of the Rings: The Fellowship of the Ring
Lord of the Rings: The Return of the King Lord of the Rings: TheTwo Towers
Lord of the Rings: The Return of the King Lord of the Rings: TheFellowship of the Ring
The Lord of the Rings: The Fellowship of the Ring (Ext. Ed.) Lord of the Rings: The Two Towers (Ext. Ed.)
Lord of the Rings: The Return of the King (Ext. Ed.) Lord of theRings: The Two Towers (Ext. Ed.)
Lord of the Rings: The Return of the King (Ext. Ed.) The Lord ofthe Rings: The Fellowship of the Ring (Ext. Ed.)
Star Wars: Episode VI: Return of the Jedi Star Wars: Episode V: The Empire Strikes Back
Star Wars: Episode IV: A New Hope Star Wars: Episode V: The Empire Strikes Back
Star Wars: Episode IV: A New Hope Star Wars: Episode VI: Return of the Jedi
Kill Bill: Vol. 1 Kill Bill: Vol. 2

TABLE I
PAIRS OF FILMS WITH THE 10 HIGHEST LEVERAGE VALUES IN ALL 20 DATA SAMPLES. THE LEVERAGE OF ALL PAIRS IS AT LEAST725 IN ALL DATA

SAMPLES.

Kendall's � of all other data samples with respect to the
ranking of data sample1. In summary, for each �lmv in
data set1 we know how many customers rated it, i.e., it's
degreedeg(v), the maximal leveragelevmax (v) it has with
any other �lm w, the number of neighborsw with at least
leverage(v; w) > 10(considering only the 100 highest values,
denoted byjlev10(v)j), the number of neighbors ranked by all
data setsjcons(v)j, the average of Kendall's� for the �rst
ranking of the consensus set against all other19 rankings, and
the signi�canceZ � of this value.

The �rst and rather intuitive result is that there is a positive
correlation between the degreedeg(v) of a �lm v and its
number of signi�cant neighborsjlev10(v)j (s. Fig. 3(a)). But
especially among the low degree �lms, there are some with
absolutely the same degree but very different numbers of
signi�cant neighbors: The �lms “Never Die Alone” and “Aqua
Teen Hunger Force: Season 2” have both been rated118times,
but the �rst has only6 signi�cant neighbors of which none is
in the consensus set for all20 data samples. The latter has
90 signi�cant neighbors of which33 are in the consensus
set. Moreover, the rank correlation of these33 consenting
neighbors is more than signi�cant with an average value of
Kendall's � = 60; 84 and Z = 5 ; 06, i.e., the order in which
these consenting �lms are given is signi�cantly the same. This
indicates that the leverage of two �lms, if it is signi�cant,
is a reliable measure that will identify the same signi�cant
neighbors in different data sets.

Fig. 3(b) shows the dependence of the maximal leverage
of a �lm levmax (v) and its number of signi�cant neighbors
jlev10(v)j and Fig. 3(c) shows the dependence oflevmax (v)
and the size of the consensus setjcons(v)j. It can be seen
that if the maximal leverage is below15, there are mostly
less than10 signi�cant neighbors and never more than7
neighbors in the consensus set. The diagrams show in general
that a small leverage value is correlated with a low number of
consensus neighbors. Thus, a low maximal leveragelevmax (v)
indicates that the data sample is not good enough to make
any statistically valid recommendations for �lmv, because
the given recommendations strongly depend on the given
data sample. Fig. 3(c) and Fig. 3(d) �nally show that for all
�lms whose maximal leverage is at least100, the consensus
set almost always has at least10 members and that the

average ranking correlation coef�cient is highly signi�cant
for them. This last bit of evidence shows that the proposed
method enables the network analyst to assess whether the
data sample at hand is good enough to give recommendations
for any single object and secondly to give statistically reli-
able recommendations for those objects that have signi�cant
neighbors. Thus, any reasonable method that uses the modi�ed
leverage to build a one-mode projection of the bipartite graph
will reliably connect those objects that are signi�cantly co-
occurring together. In the next section we will show for one
subset of �lms that the method not only identi�es objects that
co-occur together signi�cantly often but that these objects also
have an objective similarity in the given Net�ix data set.

C. Benchmarking the Quality

We have now shown that the method delivers very stable
results, i.e., for all �lms v for which the data set contains
enough inoformation, the method reliably assigns the same
�lms w as most signi�cant neighbors in all20data set samples.
Moreover it lists them in nearly the same order. But this does
not yet imply that the most signi�cant neighbors are also those
�lms that are most similar with respect to the content. Of
course, the latter is a necessary requirement to cluster the
graph resulting from the one-mode projection. On the other
hand, this aspect is in general very hard to quantify objectively,
as can be seen in the following examples which show four
�lms and their two highest-ranked recommendations:

1) Dracula / The Strange Case of Dr. Jekyll and Mr. Hyde:
a) Dr. Jekyll and Mr. Hyde
b) Frankenstein / Bride of Frankenstein: The Legacy

Collection
2) Frank Zappa: Does Humor Belong in Music?:

a) The Miles Davis Story
b) Frank Zappa: Baby Snakes

3) WWE: Summerslam 2004:
a) Wrestlemania XX 2004
b) WWE: Vengeance 2004

4) Gattaca:
a) The Fifth Element
b) Contact

All of these recommendations seem to be reasonable and some
are even interesting and non-obvious. But given the other






