
CRATER: Case-based Reasoning Framework for
Constructing An Adaptation Engine in

Self-Adaptive Software Systems

by

Mohammed A. Abufouda

A thesis submitted to the

Department of Computer Science

in partial fulfilment of the requirements for the degree of

Master’s of Computer Science

Department of Computer Science

Technical University of Kaiserslautern

October 2012

Abstract

Self-adaptivity in software systems is a property that allows software systems to au-

tonomously adjust their behaviour during run-time to keep satisfying system’s goal.

This adjustment is performed with minimal or without human intervention. The mo-

tivation behind developing self-adaptive software systems is to enable the managed

system to run independently which reduces the cost of complexities caused by manual

handling of maintenance. Efficient self-adaptive software system should handle all

possible operating scenarios that violate system’s goals and react to these violations

properly. This requires Adaptation Engine that receives adaptation request during the

monitoring process of the managed system and responds with the appropriate adapta-

tion response. In this thesis CRATER is presented which is a framework for building

an external adaptation engine for self-adaptive software systems that is built on Case-

Based Reasoning (CBR). CBR is an artificial intelligence branch constructed mainly

on the idea of ”similar problems have similar solutions”. CRATER handles two of

the challenging problems in self-adaptive software system: (1) Handling uncertainty

that hinders the adaptation process and (2) Managing the adaptation space complexity

efficiently. CRATER provides an effective mechanism for producing applicable adap-

tation response with effective handling for both aforementioned challenges. This thesis

presents an experiment illustrating how CRATER is utilized along with results and

evaluation that show a significant potential for response time, adaptation expediency

and adaptation under uncertainty.

Acknowledgements

I would like to express my sincere gratitude all those who supported me during my

master study and master thesis. Especially Jun. Prof. Lars Grunske who patiently

spares no efforts in helping me with continuous support, advices and invaluable feed-

backs during my last year. Warm thanks are dedicated to my father and mother

who supported me during the whole period of my studies. A special warm thank is

devoted for my wife Hadeel who faithfully heartens me during my study.

Declaration

I hereby declare that this master thesis contains no material which has been ac-

cepted for the award of any other degree or diploma in any university or equivalent

institution except where due reference is made. To the best of my knowledge and be-

lief, this master thesis contains no material previously published or written by another

person, except where due reference is made in the text of the master thesis.

Kaiserslautern, September 29, 2012

Mohammed Abufouda

Contents

Abstract ii

Acknowledgements iii

Declaration iv

List of Tables ix

List of Figures x

Algorithms xi

1 Introduction 1

1.1 Goals and contributions of this thesis 2

1.2 Research method . 3

1.3 Terms definition . 4

1.4 Thesis outline . 5

2 Preliminaries 6

2.1 Self-adaptive software systems . 6

2.1.1 Adaptation classifications . 7

2.2 Uncertainty . 9

2.2.1 Uncertainty in software engineering 9

2.2.2 Uncertainty in self-adaptive software systems 10

2.3 Case-based Reasoning . 11

2.3.1 CBR overview . 11

2.3.2 CBR life cycle (RE)4 . 11

2.3.3 Similarity measures . 13

v

2.3.4 Case retrieval . 14

2.3.5 Case adaptation . 15

2.3.6 Learning in CBR . 15

2.4 Summary . 16

3 State of The Art 17

3.1 Related work selection criteria . 18

3.2 Related work . 18

3.2.1 Learning based adaptation . 18

3.2.2 Architecture and model based adaptation 19

3.2.3 Middleware based adaptation 21

3.2.4 Fuzzy control based adaptation 22

3.2.5 Programming framework based adaptation 22

3.3 Discussion . 23

3.4 Problem statement . 24

3.5 Summary . 26

4 Proposed Solution 27

4.1 Motivating example . 27

4.1.1 Robot system . 27

4.1.2 Robot goals . 30

4.1.2.1 Quality-related requirements 30

4.1.2.2 Functioning requirements 31

4.2 CBR knowledge base . 32

4.3 Managed system attributes . 32

4.3.1 Attribute types . 32

4.3.2 Attribute weight . 33

4.4 CBR as adaptation engine . 34

4.4.1 Adaptation request . 34

4.4.2 Adaptation response . 36

4.4.3 Adaptation process . 36

4.4.3.1 Analysing adaptation request 36

4.4.3.2 Case retrieval . 38

4.4.3.3 Constructing QAF 38

4.4.3.4 Generate adaptation response 40

4.4.3.5 Retain . 40

vi

4.5 Utility function . 42

4.5.1 Utility function importance 42

4.5.2 Utility function definition . 42

4.5.3 Utility function weight . 44

4.5.4 Overall utility function . 44

4.5.5 Utility function examples . 45

4.6 Uncertainty diminution in CRATER 46

4.6.1 Uncertainty handling . 47

4.6.2 CRATER’s uncertainty location 48

4.6.3 CRATER’s uncertainty level 48

4.6.3.1 Adaptation request uncertainty 48

4.6.3.2 Uncertainty in qualified adaptation frame 50

4.7 Summary . 51

5 Implementation 52

5.1 CRATER architecture . 52

5.1.1 Knowledge base modelling . 52

5.1.2 CBR engine . 53

5.1.2.1 Adapt/Reuse component 53

5.1.2.2 Retain component 55

5.2 Adaptation request . 55

5.3 Monitoring . 55

5.4 Main classes . 55

5.5 Development tools . 56

5.6 Uncertainty . 57

5.7 Summary . 58

6 Experiment and Results 59

6.1 Experiment setup . 59

6.1.1 Design decisions . 59

6.1.2 Experiment nature . 60

6.2 GQM-based metrics . 60

6.2.1 Adaptation engine performance 60

6.2.1.1 Adaptation remembrance 60

6.2.1.2 Adaptation response time 61

6.2.2 Adaptation expediency . 61

vii

6.3 Results . 62

6.3.1 Examples of adaptation . 63

6.3.2 Response time results . 63

6.3.2.1 β value effect on response time 65

6.3.2.2 Response time under uncertainty 65

6.3.2.3 η value effect on response time 66

6.3.3 Adaptation remembrance . 66

6.3.4 Adaptation expediency . 67

6.3.5 Results discussion and research evidence 69

6.3.6 Results conclusion . 71

6.4 Experiment validity . 71

6.4.1 Internal validity . 72

6.4.2 External validity . 72

6.5 Summary . 72

7 Conclusions 73

7.1 CRATER merits and limitations . 74

7.1.1 CRATER merits . 74

7.1.2 CRATER limitations . 75

7.2 Prospective and vision . 76

Bibliography 77

viii

List of Tables

3.1 Summary of Related Work . 25

4.1 Robot attribute data sheet . 29

4.2 Robot quality requirements . 30

4.3 Encryption techniques characteristics 31

4.4 Robot functioning requirements . 31

4.5 Managed System Attribute Types . 33

6.1 Adaptation Samples . 64

ix

List of Figures

1.1 Self-adaptive Software System with External Adaptation Engine . . . 2

2.1 Self-adaptation Process . 7

2.2 Case-based Reasoning Life Cycle . 12

4.1 Abstract View of Robot Components 28

4.2 CRATER Reference Model . 35

4.3 Adaptation Response Estimation Flow Chart 43

5.1 CRATER’s Architecture: Execution View 53

5.2 Knowledge Base Snippet . 54

5.3 Main classes of CRATER . 57

5.4 Uncertainty handling classes . 58

6.1 GQM Sheet for Adaptation Performance Goal 61

6.2 GQM Sheet for Adaptation Expediency Goal 62

6.3 Average Response Time . 64

6.4 Average Response Time: Different β values 65

6.5 Average Response Time Under Uncertainty 66

6.6 Average Response Time Under Uncertainty: Different η values 67

6.7 Adaptation Response Remembrance 68

6.8 β Effect on the Adaptation Process 68

6.9 Adaptation Expediency . 69

6.10 Adaptation Expediency Under Uncertainty 70

x

List of Algorithms

1 CRATER adaptation process . 37

2 First Fit Heuristic Constructive Adaptation 41

3 Best Fit Heuristic Constructive Adaptation 41

4 Estimating µ . 50

xi

Chapter 1

Introduction

Needless to say that software plays a vital role in the modern daily activity which

creates more challenges that are needed to be solved. Software engineering aims to

provide software of quality. One of the challenges is to construct a software with the

ability of autonomous behaving during its run-time. Hence self-adaptivity in software

systems is the ability of a software system to adjust its behavior during run-time to

preserve system’s goals. This property dictates the presence of adaptation mecha-

nism in order to do the logic of self-adaptivity. Many solutions, including techniques,

approaches and frameworks, exist in literature and practice to realize self-adaptivity.

Self-adaptivity is required to handle software system’s complexity and costs [34] and

enable these systems to run autonomously. This requires reducing the human inter-

ference as much as possible which represents a challenge in the development process of

self-adaptive systems particularity when the operating states and configurations of the

managed system are relatively big. Many challenges exist in the area of self-adaptive

software system and many contributions exist in the literature to handle these chal-

lenges. However these contributions lack the flexible and dynamic adaptation from

three perspectives:

• Adaptation responsible unit: There is no clear separation between the man-

aged system, the system intended to behave adaptively, and the adaptation

engine. This increases the complexity and maintenance of the development of

self-adaptive software system and limits the transferability of the work done for

one application to another applications and domains.

• Uncertainty handling: Uncertainty is a challenge that exists not only in self-

adaptive software system but also in the entire software engineering areas.

1

Chapter 1: Introduction Goals and contributions of this thesis

Therefore handling uncertainty is considered crucial issue in constructing self-

adaptive software system as uncertainty hinders the adaptation process if it is

not handled and diminished.

• Adaptation space: The corner stone of self-adaptive software system is to provide

an adaptation to be applied on the managed system during run time. The

adaptation process raises a performance challenge if the adaptation space is

relatively big particularly in the software systems where new adaptations are

required to be inferred. This challenge requires an efficient mechanism in dealing

with this adaptation space that guarantees learning new adaptation along with

providing efficient adaptation at satisfactory performance.

1.1 Goals and contributions of this thesis

This thesis is intended to develop and validate CRATER, a framework for an external

adaptation engine for self-adaptive software system, which solves the aforementioned

problems together. Concisely, in addition to provide the functionality of self-adaptive

software systems, CRATER is used to (1) handle uncertainty that appears in the

adaptation process which hinders the efficiency of the adaptation process, (2) en-

hance the performance of adaptation process particularly performance problems due

to the big number of operation states and configurations and (3) provide reasonable

response time of the adaptation engine which affects the whole adaptation process

positively. Figure 1.1 shows an abstracted view of CRATER. The managed system is

Figure 1.1: Self-adaptive Software System with External Adaptation Engine

2

Chapter 1: Introduction Research method

a system that intended to upgrade to a self-adaptive software system and is separated

from the external adaptation engine. CRATER requires monitoring the managed sys-

tem behaviour so that it can detect any deviation from system’s goals. In case that

the monitor detects a violation in the managed system’s goals, an adaptation request

is issued and passed to the adaptation engine which is modelled in this thesis as

Case-based Reasoning (CBR) engine. The adaptation engine responds to this adap-

tation request with appropriate adaptation response that rescues the system from its

violating state to another state that keeps satisfying system’s goal. Executor task’s

is to apply the adaptation response on the managed system.

1.2 Research method

This thesis aims to provide a trustworthy empirically validated external adaptation

engine that can be utilized in the realization of self-adaptive software system. The

outcome of this research should overcome the problems in the existing solutions in

realizing self-adaptivity in software systems. In order to accomplish this mission, the

research in this thesis follows the following research method steps:

1. Problem statement: The first step in this research is to identify the problem this

thesis is solving. This task is carried out by literature review of the existing

solution and inspecting their limitation. The outcome of this step is a clear and

specific problem statement.

2. Solution idea: During this step a solution idea is synthesized in order to con-

struct an external adaptation engine that overcome the problems defined in the

problem statement. This step involves an implementation of the solution idea

i.e. the proposed external adaptation engine in order to test and validate it.

3. Experimental evaluation: This step aims to validate the external adaptation

engine resulted from the solution idea step of the research method. The vali-

dation of the proposed solution is performed through an empirical evaluation

style. The empirical evaluation is conducted as experiment with binary val-

idation paradigm on a motivating example illustrating the usefulness of this

solution. The results of this steps provide the software engineering empirical

evidence for the validation of this research.

3

Chapter 1: Introduction Terms definition

1.3 Terms definition

In this section I will list the terms used in the following chapters with their definitions

within the scope of this thesis:

• Adaptation Engine: Based on the work in [34], the adaptation engine is the

component or the set of components that are responsible for providing self-

adaptivity mechanism. Generally, an adaptation engine is an implementation

of a closed control loop [15].

• Adaptation Request: Is an object that contains managed system’s attributes

values at the time when the managed system violates a certain predefined re-

quirement.

• Adaptation Response: Adaptation response is the result of the adaptation pro-

cess performed by the adaptation engine. Adaptation response is an object that

contains the corrective state that has to be applied on the managed system.

• Uncertainty: Any object that has unknown values or undefined values is an

object with uncertainty. An example of uncertainty is an adaptation request

that has one or more attributes with unknown or undefined values.

• Adaptation Space: Is the set of all possible states that the managed system can

run in.

• System Goal: Is a functional or non functional goal of the managed system.

• Adaptable Attributes: Are the managed system’s attributes whose values can

be changed during the adaptation process.

• Qualified Adaptation Frame: Is the set of retrieved cases from the knowledge

base after the retrieving process.

• Uncertain Value: Any value that are not in the set of defined values for some

attribute.

• Utility-guided Constructive Adaptation: It is the process of constructing new

adaptations if the qualified adaptation frame is empty. The utility function is

the decisive criteria in this process.

4

Chapter 1: Introduction Thesis outline

• Managed System Uncertainty (Uncertain State): Is a state of the managed

system where one or more of its attributes has/have unknown values.

• Utility Threshold (UT): Is the utility value at which the managed system re-

quires adaptation i.e. the utility of the managed system should not reach the

value of utility threshold otherwise adaptation is issued.

1.4 Thesis outline

The rest of this thesis is organized as follow: Chapter 2 provides the relative infor-

mation for the reader to gain general understanding of the context of this thesis. It

also contains the used technology for the proposed solution. This chapter includes in-

formation about: (1) self-adaptive software systems, (2) uncertainty in self-adaptive

software systems and (3) case-based reasoning. In Chapter 3, I will shed light on

some related work and how researchers solve self-adaptivity challenges accompany

with extensive evaluation for their work and relate it to CRATER. This chapter also

define the problem statement of this thesis. Chapter 4 contains details about the

proposed solution. It also contains a motivating example used for explanation and

for the experiment. Chapter 5 is dedicated for the implementation of CRATER.

Chapter 6 describes the experiment settings used to evaluate CRATER. It also con-

tains evidences regarding this research by elaborating software measures and metrics

for empirical evaluation purpose. Chapter 7 provides a conclusion of the thesis and

discusses the merits of CRATER and prospective.

5

Chapter 2

Preliminaries

In this chapter I will pave the way for the reader to gain enough information about the

topic of the thesis by providing preliminary concepts used throughout this thesis. In

Section 2.1 I will start with self-adaptive software systems then provide information

about uncertainty in self-adaptive software systems in Section 2.2. In Section 2.3 I

will end this chapter by providing basics of Case-Based Reasoning (CBR).

2.1 Self-adaptive software systems

Software quality is considered the basic motivation in software engineering field. In

order to provide a software system with an accepted quality, some quality attributes

should be preserved. Software adaptability is a quality attribute that contributes

in reducing the cost of handling the complexities of software systems [34] and re-

duces the required amount of maintenance which reduces the human involvement.

Most of the work in the area of self-adaptive software engineering agrees that self-

adaptive software systems are systems that can change its behaviour during runtime

while preserving software system’s goals. So as to develop a self-adaptive system,

many questions should be answered for example, ”When”, ”How” and ”What” to be

adapt [34]. Answering these questions is the main challenge during the development

of a self-adaptive software system and characterizes the behaviour of the system and

the interaction among its components.

Generally, adaptation mechanism goes through four processes [34] as shown in Fig-

ure 2.1:

i. Monitoring : In this process, a monitoring process is kept in order to perform a

6

Chapter 2: Preliminaries Self-adaptive software systems

Figure 2.1: Self-adaptation Process [34]

continuous reading for system’s characteristics. Generally, these characteristics

are the attributes and parameters of the system that the adaptation process is

build based on their values that at some point of operating necessitates adap-

tation.

ii. Detecting : Detecting process investigates and evaluates system characteristics

in order to decide whether adaptation is need or not.

iii. Deciding : If adaptation is required, this process characterizes the adaptation

nature. This includes answers to questions like (1) what system’s characteristics

should be changed? (2) what the nature of this change is ?

iv Acting : After the deciding process, an action should take place to apply the

adaptation. This includes changing of the runtime behaviour of the managed

system by applying the proposed adaptation.

2.1.1 Adaptation classifications

Self-adaptive software systems can be classified based on many perspectives. In the

following paragraphs I will provide some of these categorizations.

1. Adaptation responsible: In self-adaptive software systems there are two types of

adaptation based on which component or software is responsible for doing the

adaptation:

i. External Adaptation: In this approach similar to Figure 1.1, the adap-

tation engine is separated from the adaptable software system itself. The

7

Chapter 2: Preliminaries Self-adaptive software systems

adaptation engine provides the adaptation response once required and ap-

plies it on the managed system. This separation between the managed

system and the adaptation engine enhances the scalability and maintain-

ability of the entire system. Also, the external adaptation engine can

serve multiple self-adaptive components and legacy systems that need to

be adaptable.

ii. Internal Adaptation: In this approach, the adaptation logic is embedded

in the software system itself. This approach hinders the scalability and

increases the system’s complexity.

2. Adaptation response nature: Adaptation response has two style in terms of the

way they are generated:

i. Static Adaptation: In this type, adaptation responses are static and the

logic of adaptation is restricted to choose one of these decisions. It is

obvious that this type hampers the existence of new adaptations; however,

it guarantees the suitability and correctness of adaptation decisions. The

work in [9] is an example of static adaptation.

ii. Dynamic Adaptation: In this type, new adaptations can be evolved during

run-time. Unquestionably these adaptations should guarantee the satis-

faction of system’s requirements which is an elementary challenge in self-

adaptive software systems. In this type of adaptation, a learning process is

required to learn and provide new adaptation responses as efficient reaction

for new situations the managed system may run through.

3. Adaptation process initiation: This categorization is based on the moment at

which the system issues an adaptation request during the runtime of the self-

adaptive software system. The categorization includes:

i. Reactive Adaptation: When the system reaches an unwanted state, then

the adaptation request is issued.

ii. Proactive Adaptation: The adaptation request is issued before the system

reaches unwanted state. This requires a component for early detection for

states that violate system’s goals.

i. Preventive Adaptation: In this case the fault is repaired before a conse-

quence appears to the user [26].

8

Chapter 2: Preliminaries Uncertainty

In all cases monitoring system’s states is required however in the proactive

adaptation, more effort should be harnessed for handling the prediction and

detection of unwanted state before reaching them. It is obvious that proactive

adaptation can solve many drawbacks of the reactive adaptation as it precludes

the system from operating in unwanted states.

2.2 Uncertainty

In this section I will provide some information about uncertainty. In Subsection 2.2.1 I

will discuss some information about uncertainty in the domain of software engineering

then in Subsection 2.2.2 I will present the related definitions of uncertainty in self-

adaptive software systems.

2.2.1 Uncertainty in software engineering

Many challenges exist in the software engineering field, one of them is dealing with

Uncertainty. Diminution of uncertainty becomes more and more essential; because

a system running under uncertainty could raise the percentage of undesired results.

Uncertainty may exist in all phases of software engineering life cycle. This means that

uncertainty may appear in requirements engineering, system design and even in coding

and software testing [46]. I will shed light on the general definitions and classifications

of uncertainty in software engineering then I will talk about uncertainty in the self-

adaptive software systems and the scope of uncertainty that will be covered in this

paper. Many definitions for uncertainty exists in literature, one general definition is

”Any departure from the unachievable ideal of complete determinism’ ’ [41]. Another

definition is ” Uncertainty Principle in Software Engineering (UPSE), which states

that uncertainty is inherent and inevitable in software development processes and

products” [46]. Based on these definitions I can say that the definition of uncertainty

is context-specific which means that uncertainty in requirements is different from

the uncertainty in system models even though the requirements and system models

are related. Hence, dealing with uncertainty is different among system development

phases. Also it is clear that if uncertainty exists in one development phase, the

subsequent phases will inherit this property unless it is deterministically resolved.

9

Chapter 2: Preliminaries Uncertainty

2.2.2 Uncertainty in self-adaptive software systems

In self-adaptive software systems, uncertainty is a crucial challenge. This is because

the behaviour of the system during run-time will be determined by the system itself.

So, the system should behave correctly and should not dissent the functional and non-

functional requirements after the adaptation has been performed. In self-adaptive

software systems, the possibility of uncertainties may increase as the adaptation en-

gine decisions will face some uncertainties in both reading the system’s parameters

and in judging the right adaptation decision.

Based on [41] uncertainty has three dimensions:

1. The Location of uncertainty: Where the uncertainty manifests in the system.

2. The Level of uncertainty: A variation between deterministic level and total

ignorance. This means that uncertainty about one attribute of the system can

take a value between one and zero [32].

3. The Nature of uncertainty: Whether the cause of uncertainty is variability or

lack of knowledge in the uncertainty meant attribute of the system.

Uncertainty in self-adaptive software systems falls into two categories [17]:

i. Internal Uncertainty : This type of uncertainty is a consequence of internal

models of the system and adaptation engine. This means that uncertainty

is resulted from the system itself including the managed system and/or the

adaptation engine.

ii. External Uncertainty : This type of uncertainty is a consequence of the environ-

ment that encompasses the self-adaptive software system.

I see both of external and internal uncertainty related to each other as the external

uncertainty contributes in raising the level of internal uncertainty. This is because

when the system reads some parameters from the external environment that holds

uncertain readings, this uncertainty will be transferred to the internal model, e.g. the

adaptation engine hence the internal uncertainty will grow. For example, if a robot

system has some sensors for detecting obstacles in the surrounding area then this

attribute, obstacle existence, represents an external source of uncertainty because the

robot may fail to provide accurate readings to indicate if certainly there is an obstacle

or not in the environment. This external uncertainty is reflected on the robot and

contributes in an internal uncertainty.

10

Chapter 2: Preliminaries Case-based Reasoning

2.3 Case-based Reasoning

In this section I will talk about case-based reasoning (CBR) and provide enough

details for the reader about it. Section 2.3.1 provides a quick overview about CBR.

Section 2.3.2 gives detailed information about CBR life cycle.

2.3.1 CBR overview

Case-Based Reasoning (CBR) is a branch of artificial intelligence. CBR can be seen as

a machine learning approach [38, 37] that is build on the idea of human way of solving

problems i.e. as similar problems have similar solutions [5]. CBR is established on

strong mathematical foundations [31] like similarity measures which is the backbone

of CBR. Any CBR system has a knowledge base that contains cases representing the

knowledge of the modelled system. Each case is a pair of a problem and a solution. For

any new problem, CBR systems retrieve the relevant cases from the knowledge base

which contains cases, then reuse and adapt them for application on the new problem.

If the adaptation and reuse phase produces new cases then they are retained in the

knowledge base for later reuse. This process represents the learning mechanism, as

learning is performed in CBR via retaining new cases. In the following section we

will elucidate CBR working mechanism and its fundamentals.

2.3.2 CBR life cycle (RE)4

Figure 2.2 shows the cycle of CBR system. If we have a new problem, it has to be

represented as a case, then the generating of the solution has four steps [5] as I will

explain in the following:

i. Retrieve: The CBR system retrieves the most similar case or cases from the

knowledge base by applying the similarity measures. It is a design decision to

retrieve only the most similar case or a set of similar cases.

ii. Reuse: In this stage, the system makes use of the information of the retrieved

cases. The retrieved case in ideal situation represents a solution for the problem

without any modification of its information. If not, CBR adapts this information

to the query problem and then formulates a new solution.

iii. Revise: A revision of the new solution is important to make sure that it satisfies

the requirement of the system. Revising process can be done by applying it to

11

Chapter 2: Preliminaries Case-based Reasoning

Figure 2.2: Case-based Reasoning Life Cycle [5]

12

Chapter 2: Preliminaries Case-based Reasoning

real world [5] or evaluating it by domain expert. Also revising can be done by

simulation approaches [38].

iv. Retain: In this stage if the new generated case represents a valuable improve-

ment to the knowledge base, then it is saved in the knowledge base in order to

use it latter.

Case can be represented in many ways such that: (1) attribute-value based repre-

sentation (2) object oriented representation and (3) other specific representation like

XML format. The first type is widely used because it is easy to represent the problem

beside the efficiency of similarity measures used for this type. The attributes can be

numeric, symbolic, data time... etc. In this thesis I will utilize the attribute-value

based representation as I will explain in details in Chapter 4.

2.3.3 Similarity measures

In order to perform the retrieving process, efficient mathematical similarity measures

are essential. The similarity measures are applied to the attributes of the case. The

appropriateness and effectiveness of similarity measures plays an important role in

the efficiency of the CBR system since efficient similarity measures will lead to a

better case retrieval. This is because case retrieval is the basis for reuse and retain

steps later on. Similarity measures can also be used to estimate the transferability

of retained cases into new solution in the adaptation phase. Formally, a similarity

measure is a function sim: (Q,D) → [0, 1] [37]. A value of one represent heights

similarity, an exact match, and a value of zero represent the highest dissimilarity. To

implement this, many traditional similarity measures exist. In [38], many similarity

measures for improved case retrieval have been introduced.

Hamming Distance for example, is one of these measures for binary attributes so

for any two cases x and y with n attribute vectors, the distance between these two

cases can be calculated by:

H(x, y) = n−
n

∑

i=1

|xi − yi| (HammingDistance) (2.1)

Another similarity measure is Simple Matching Coefficient SMC :

simH(x, y) = 1−
H(x, y)

n
|{i|xi = yi}| (SMC) (2.2)

13

Chapter 2: Preliminaries Case-based Reasoning

For numeric attributes, Euclidean distance can be used:

distEuclid(x, y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (EuclideanDistance) (2.3)

Also many similarity measures like City Block Metric and Euclidean Distance can be

used to calculate similarity measures efficiently. Attributes can also be weighted for

improving the results of similarity measures; Weighted Minkowski Norm [38] is one

of these measures. Another way for implementing similarity measures is Probabilistic

Similarity Measures (PSM) [7, 19]. These similarity measures play a vital role in

the proposed idea in this thesis; this will be discussed later in Chapter 4 where the

uncertainty will be represented in terms of similarity between system’s attributes. In

order to calculate the similarity between two cases, we need to find the similarity

between the corresponding attributes. This similarity is calculated by one of the

similarity measures aforementioned. One important aspect in representing the case

attributes is the weights of these attributes. Attributes can be weighted according to

their importance. Similarity can be seen as Local Similarity and Global Similarity.

The local similarity is the similarity between attributes while the global similarity is

the similarity on the case level itself where attributes weights are considered.

2.3.4 Case retrieval

Retrieval process is based on similarity measures. The retrieval process may be (1)

with most similar case (2) the k most similar cases or (3) all cases with minimal

similarity simmin . Many approaches exist for realizing retrieval process in CBR

systems:

i. Sequential Retrieval is one way to do retrieval where the CBR system calcu-

lates the similarity for all cases first, and then the retrieval process takes place.

Obviously, this approach has a drawback when the number of the cases in the

knowledge base is relatively large.

ii. 2-step retrieval suggests making the similarity calculations on a candidate sub-

set of cases. Determining this subset is a challenge in this type.

iii. Index-based retrieval requires off-line generating of indices for all cases before

performing similarity measures. KD-Trees [42] and Fish and Shrink [36] algo-

rithms are used in this type.

14

Chapter 2: Preliminaries Case-based Reasoning

Diversity of the retrieved cases is an issue of awareness. Suppose we have a retrieved

cases CK = {C1, C2, ., Ck} for the query case Cx , a compromise between the difference

of similarities among cases in CK is vital. On the one hand and for better retrieval

process, a maximal similarity between each case in CK and Cx should be guaranteed.

This will preserve the effectiveness of retrieval process. On the other hand, keeping

minimal similarity among the retrieved cases in CK will provide more alternatives

for the user. To attain this diversity without affecting the quality of CK , Similarity

Layers [24] can be used for classifying the similarities into levels where cases with

close similarities falls into one layer. Then the final retrieved cases can be chosen out

of cases categorized in these layers.

2.3.5 Case adaptation

In this process, adaptation is performed on the most similar case(s) in order to provide

the solution for the query case Cx. In the ideal situations; the adaptation process is

limited to reusing without any modifications of the solution(s) of retrieved case(s).

There are four types of case adaptation [43]:

i. Null Adaptation: In this type, the adaptation process is restricted to use the

exact solution from the most similar cases without any modification.

ii. Transformational Adaptation: In this type, changes to the solution features or

solution structure can be done. For example deleting, adding or modifying some

part is essential to provide the new solution. The adaptation process may be

limited to changes in the attributes value without changing the structure of case

itself. This type will be utilized in the proposed solution in this thesis.

iii. Generative Adaptation: In this type, the solution is generated from scratch.

This type of adaptation requires some heuristics to provide efficient adaptation

process [30].

iv. Compositional Adaptation: In this type, the generated solution is combined

from more than one solution.

2.3.6 Learning in CBR

Learning in CBR is performed by simply retaining new solutions. However; it is

obvious that not all new cases should be saved. This is because the limitations of the

15

Chapter 2: Preliminaries Summary

knowledge base size and the quality of cases stored in the knowledge base. For example

it is obvious that we need not to save the solution generated by the null adaptation

process, because the provided solutions are the same as those in the knowledge base,

so there is no need to add them. Also, we have to be aware of retaining cases with high

similarity with those retained in the knowledge base. This is because the knowledge

base will be filled with cases that are highly similar to each other. Learning is not

restricted to saving new cases, it also require deleting cases from knowledge base.

Maintaining a high quality knowledge base requires deleting process for redundant

and obsolete cases. Also noisy cases that are that were incorrectly retained should be

eliminated and removed [6]. Case-Based Learning (CBL) algorithms and approaches

have been covered by [6] where the learning and memorizing is carried out in CBR.

2.4 Summary

This chapter presented the background information required for the reader to follow

this thesis. This chapter paved the way to read the rest of this thesis. The definition

of self-adaptive software system was presented along with the classification of it.

Then presented in this chapter the uncertainty principle in software engineering and

in particular in self-adaptive software systems. This chapter ended with describing

case-based reasoning (CBR), which is the core of the idea solution of this thesis. CBR

was described in details including its life cycle, similarity measures, case retrieval, case

adaptation and learning process.

16

Chapter 3

State of The Art

This chapter presents the related work in the area of self-adaptive software system.

The process of scanning the related work to this thesis is not easy in area of self-

adaptive software systems for many reasons like:

• The results sometimes were to generic to relate them to the core topic of this

thesis as the main concern was the adaptation engine in self-adaptive software

systems.

• The terms used in literature are overlapped and there are many expressions

that refers to the same thing. For example, the term adaptation engine can be

substituted with many terms like control unit [14] and autonomic manager [8].

The same issue appears in the alternative terms of ”self-adaptive” for example

the term ”Autonomic systems” is overlapped with the term ”self-adaptive” [12].

• Self-Adaptivity is contextual based and not restricted to software engineering

area. Some fields like (1) artificial intelligence which concentrates in areas like

games and robotics and (2) information systems which concentrates in areas like

service oriented architectures and middlewares uses the self-adaptivity property.

• Self-Adaptivity has many contexts in the software engineering field itself. All

software engineering activities are involved in realizing self-adaptivity starting

form requirement elicitation and ending with software maintenance.

This leads to a considerable effort in deciding and intercepting the related work to

this thesis.

17

Chapter 3: State of The Art Related work selection criteria

3.1 Related work selection criteria

Some criteria were used in the search process in order to include the work in the

related work. These criteria includes:

• Three libraries were searched for the related work to the self-adaptive soft-

ware system adaptation engine. The libraries are (1) ACM (2) IEEE and (3)

SpringerLink.

• The modularity and the maturity of the self-adaptive software system construc-

tion in the related work. Adaptation engine has to be included in the work

either explicitly or implicitly as the idea of this thesis is to build an external

adaptation engine.

• All the selected related work were in English language.

In the following section I will provide a list of related work.

3.2 Related work

During the last decade, the body of literature in the area of self-adaptivity has pro-

vided many of frameworks, approaches and technologies that enhance self-adaptivity.

This work is widespread in many solution areas. In the following sections I will

present the related work categorized according to the mechanisms used to support

self-adaptivity.

3.2.1 Learning based adaptation

Salehie and Tahvildari [33] proposed a framework for realizing the deciding process

performed by external adaptation engine. They use knowledge base to capture man-

aged system’s information namely domain info, goals and utility info. This informa-

tion is used in the decision-making algorithm, as they name it, which is responsible

for providing the adaptation decision. This framework is theoretical one which needs

an implementation and evaluation which is not provided by their work.

In [22], Kim and Park provided a reinforcement learning-based approach for

architecture-based self-managed software using both on-line and off-line learning.

They used goal and scenario-based techniques for representing the requirements of

18

Chapter 3: State of The Art Related work

the system. They provided five phases for implementing self-management named De-

tection, Planning, Execution, Evaluation, and learning phases. In this work a case

study was used to apply the approach which is a robot that requires adapting by

learning from previous behaviours. This approach was supported with experimental

evaluation for two experiments for game robot. Even though their results showed that

this approach is effective for self-management software, but I did not see any relation

between their work and architecture-based software as the name of the paper tells.

This is why I categorized this work under learning adaptation not architecture-based

adaptation.

FUSION was proposed by Elkhodary et al. [16] to solve the problem of foreseeing

the changes in environment which hinders the adaptation during runtime for feature

based systems using a machine learning technique. Knowledge base was used for se-

lecting features. An experiment had been provided to evaluate the FUSION approach

that showed accepted results. One limitation of FUSION is that it lacks operating

under uncertainty.

In [20], Mohamed-Hedi et al. provided a self-healing approach to enhance the

reliability of web services. They used aspect oriented programming and case-based

reasoning to provide the adaptation mechanism. A simple experiment was used to

validate their approach without empirical evidence.

3.2.2 Architecture and model based adaptation

RAINBOW [18] is a well-known contribution in the area of self-adaptation based on

architectural infrastructures reuse. RAINBOW monitors the managed system using

abstract architectural models to detect any constraints violation. Managed system’s

properties are captured by Rainbow using architectural style notations. A case study

of two systems that share the same system concern with different adaptation styles

was carried out to evaluate RAINBOW. The results showed an effective satisfaction

with the system’s time latency constraint.

GRAF (Graph-based Runtime Adaptation Framework) was proposed by Der-

akhshanmanesh et al. [14] for engineering self-adaptive software systems. Their

approach represented an external adaptation engine because they separated the busi-

ness logic and adaptation logic. The communication between the managed system

and GRAF framework is carried out via interfaces. GRAF provided two types of

adaptations: (1) Adaptation via Parameters and (2) Adaptation via interpretation

of a behavioural model. The second type adapts the control flow of the adaptable

19

Chapter 3: State of The Art Related work

element of the managed system. They evaluated their approach by measuring mem-

ory utilization and execution performance. They conclude that there is an overhead

in both metrics measures due to the migration from non-adaptive components into

adaptive ones. This was normal because their approach reproduces a new adaptable

version of the managed system which leads to this overhead.

Similar to GRAF [14], Vogel and Giese [40] assumed that adaptation can be per-

formed in two ways, Parameter adaptation and Structural adaptation. They provided

three steps to resolve structural adaptation and used a self-healing web application

as an example. This approach comprised both managed system and adaptation logic

with no separation which will face complexity problems if the number of components

they are adapting increases. They implemented an application example which was a

reconfiguration of components instances within EJB container. This approach lacked

evaluation, as the authors assessed their solution by saying it is efficient in terms of

development cost and runtime performance without any software measures.

Asadollahi et al. [8] presented StarMX framework for realizing self-management

for Java-based applications. In their work they provided so called autonomic man-

ager, which is an adaptation engine that encapsulates the adaptation logic. Adap-

tation logic was implemented by arbitrary policy-rule language. StarMX uses JMX

and policy engines to enable self-management. Policies were used to represent the

adaptation behaviour. This framework is restricted to Java-based application as the

definition of processes is carried out by implementing certain Java interfaces in the

policy manager. They evaluated their framework against some quality attribute.

However, their evaluation for quality attributes was not quantified enough. For ex-

ample they evaluated the performance by saying it is acceptable without providing

any software measures.

Morin et al. [27] presented an architectural based approach for realizing soft-

ware adaptivity using model-driven and aspect oriented techniques. The aim of this

approach was to reduce the complexities of system by providing architectural adapta-

tion based solution. This solution was a requirement for what they call Dynamically

adaptive systems (DASs). They provided a model-oriented architectures and aspect

models for feature designing and selection. This approach had four components: (1)

Goal-based reasoning engine, (2) Aspect model weaver, (3) Configuration checker and

(4) Configuration manager. This approach acts as software product line where vari-

abilities are bounded at runtime and produces a set of configurations. They provide

a case study without evaluation that generates two configuration scripts.

20

Chapter 3: State of The Art Related work

Khakpour et al. [21] provided PobSAM which is a model-based approach. Pob-

SAM uses policies.to monitor, control and adapt the system behaviour and they used

a LTL to check the correctness of adaptation. This work contains no experiment and

evaluation for their approach.

The work in [13] provided a new formal language for representing self-adaptivity

for architecture-based self-adaptation. This language was used as an extension of the

RAINBOW framework [18]. This work explains the use of this new language using

an adaptation selection example that incorporate some stakeholders’ interests in the

selection process of the provided service which represents the adaptive service.

Bontchev et al. [10] provides a software engine for adaptable process controlling

and adaptable web-based delivered content. Their work reuses the functionality of

the existing component in order to realize self-adaptivity in architecture-based sys-

tems. This work contains only the proposed solution and the implementation without

experiment and evaluation.

3.2.3 Middleware based adaptation

In [9], a prototype for seat adaptation was provided. This prototype uses a middleware

to support adaptive behaviour. This approach was restricted to the seat adaptation

which is controlled by a software system. Their design had three layers: (1) Seat

adaptation manager which is similar to adaptation engine, (2) Middleware layer and

(3) Tangible layer which is responsible for sensing changes in the seat. The adaptation

rules of this prototype are static and they are formatted as if-else rules. This work

was not evaluated.

Adapta framework [35] was presented as a middleware that enabled self-adaptivity

for components in distributed applications. They separated the business code and the

adaptation logic which is considered as external adaptation engine. The monitoring

service in Adapta framework monitored both hardware and software changes with

two monitoring concepts: (1) Resources like CPU, memory and applications and (2)

properties like CPU load usage, amount of memory and amount of application thread.

I found the separation between these two concepts is not so effective as we cannot

monitor a resource without reading its properties and attributes. This work lacked

both experimentation and evaluation.

21

Chapter 3: State of The Art Related work

3.2.4 Fuzzy control based adaptation

Yang et al. [45] proposed a fuzzy-based self-adaptive software framework. The frame-

work has three layers: (1) Adaptation logic layer, (2) Adaptable system layer, which is

the managed system and (3) Software Bus. The adaptation logic layer represents the

adaptation engine that includes the fuzzy rule-base, fuzzification and de-fuzzification

components. This framework has a set of design steps in order to implement the

adaptation. The authors did not provide any evaluation measures and contented by

claiming that the framework realize the self-adaptation of software.

POISED [17] introduced a probabilistic approach for handling uncertainty in self-

adaptive software systems by providing positive and negative impacts of uncertainty.

An evaluation experiment had been applied which showed that POISED provided an

accepted adaptation decision under uncertainty. The limitations of this approach are

that it handles only internal uncertainty. Also this approach does not memorize and

utilize previous adaptation decisions.

3.2.5 Programming framework based adaptation

Narebdra et al. [28] proposed programming model and run time architecture for

implementing adaptive service oriented. It was done via a middleware that solves the

problem of static binding of services. The adaptation space in this work is limited

to three situations that requires adaptation of services. This work is supported by

realistic evaluation for health care scenario.

MOSES approach was proposed in the work [11] to provide self-adaptivity for SOA

systems. The authors used linear programming problem for formulating and solving

the adaptivity problem as a model-based framework. MOSES aimed to improve the

QoS for SOA and the work in [11] provides a numerical experiment to test their

approach.

The work in [44] provided an implementation of architecture-based self-adaptive

software using aspect oriented programming. They used a web-based system as an

experiment to test their implementation. The used case study employed four self-

adaptation scenarios with corresponding adaptation policy. Their experiment showed

that the response time of the self-adaptive implementation is better than the original

implementation without self-adaptivity mechanism.

Liu and Parashar [23] provided the Accord which is a programming framework

that facilitates realizing self-adaptivity in self-managed applications. The usage of

22

Chapter 3: State of The Art Discussion

this framework was illustrated using forest fire management application. In their

experiment they evaluate the programming overhead of using Accord.

3.3 Discussion

After investigating the previous related work, some issues needed to be clarified with

relation to CRATER.

• Many of existing work including those listed in the related work do not provide

quality evaluation metrics.

• Most of the related work do not provide information regarding the limitation

of their approaches and the applicable domains.

• Some of these approaches do not consider the space of the adaptation. This

appears in three types:

i. Simplistic static adaptation rules that are hard-coded [9]. It is clear

that this type of solutions is not sufficient if we have large number of possible

adaptations and also the maintainability cost of the system will increase. This

is because each time we have a new adaptation we have to put it in the code

manually and redeploy the application.

ii. Large number of adaptations that are considered in each adaptation

process [45, 17] which affects the performance negatively. I suppose that for

any adaptation request we need not to search through the whole number of

possible adaptation responses.

iii. Previous adaptations are not considered in most approaches in the

previous related work. This means that the system will do the same logic of

adaptation many times which is a redundant computation [17].

• Some authors claim that their approaches and frameworks implement the control-

loop processes. However, I found that most of them do not provide evidences

regarding the design and implementation of these processes. An example of this

is the work in [33].

• Self-adaptivity requires a solution outside the software engineering to provide

effective adaptation. These areas of solutions are basically Artificial intelligence,

23

Chapter 3: State of The Art Problem statement

Fuzzy implementations and Probability theory. As a result, new problems may

emerge in the provided solution. Suppose that we use a machine learning to

solve self-adaptivity. This will lead to problems like accuracy of learning [16]

for example. These problems are not related to self-adaptivity but they are

technology specific consequences. This kind of problems contribute in increasing

the complexity of the system which is not required.

• Uncertainty is a challenge in self-adaptive software systems which was not cov-

ered by most of the work.

• Most of work do not incorporate the knowledge component proposed by the [1].

This component should be consulted for all phases of adaptation process.

Table 3.1 summarizes the related work done in this thesis. The table has two aspects

of comparison (1) Research aspects and (2) Self-adaptivity aspect. The earlier aspect

is important and represent an indication regarding the maturity and creditability of

the research. The later aspect is related to the topic of this thesis.

3.4 Problem statement

Based on the state of the art described in Section 3.2 and on the summary of the

related work depicted in Table 3.1, it is the time to state the problem this thesis is

tackling. It is obvious that handling the challenges explained earlier in Chapter 1

and investigated in Section 3.2 of this chapter is essential in order to provide an

efficient self-adaptive software system as they affect the functionality, performance

and trustiness of the self-adaptive software system. The majority of existing solutions

fails to handle those challenges together which forms the motivation of this thesis.

Based on that, the problem treated in this thesis is concluded as follow:

There is no self-adaptive software system solution that solves the following problems

together :

1. Handling and diminishing the uncertainty that hinders the adaptation process.

2. Managing the complexity of adaptation space by remembering the previously

performed adaptations which has positive impacts on the performance of the

adaptation process.

3. Providing an efficient performance of the adaptation engine.

24

Table 3.1: Summary of Related Work

Covered literature categorization Work
Research aspects Self-adaptivity aspects

Explicit

Problem.

Stat.

Explicit

contribution

stat.

Experiment Evaluation

metrics

Limitations Threats to

validity

Adaptation

Expediency,

(usefulness)

Adaptation

remem-

brance

Uncertainty

Handling

Adap.

Response

Time

Adap.

style

Adap.

engine

Learning based adapt.

[33] X X X X X X X X X X Dynamic External

[22] X X X X X X X X X X Dynamic External

[16] X X X X X X X X X X Dynamic External

[20] X X X X X X X X X X Dynamic External

Architecture & model based adapt.

[18] X X X X X X X X Xin [12] X Dynamic External

[14] X X X X X X X X X X Dynamic External

[40] X X X X X X X X X X Static Internal

[8] X X X X X X X X X X Dynamic External

[27] X X X X X X X X X X Dynamic External

[21] X X X X X X X X X X Dynamic Internal

[13] X X X X X X X X X X Static External

[10] X X X X X X X X X X Dynamic External

Middleware based adapt.
[9] X X X X X X X X X X Static Internal

[35] X X X X X X X X X X Dynamic External

Fuzzy control based adapt.
[45] X X X X X X X X X X Dynamic External

[17] X X X X X X X X X X Dynamic Internal

Programming framework based adapt.

[28] X X X X X X X X X X Dynamic External

[11] X X X X X X X X X X Dynamic External

[44] X X X X X X X X X X Dynamic Internal

[23] X X X X X X X X X X Dynamic Internal

25

Chapter 3: State of The Art Summary

3.5 Summary

This chapter covered the related work to this thesis. Related work was categorized

into five categories according to mechanism the self-adaptivity is dealt with in the

related work. A discussion on the covered state of the art was presented in this

chapter after presenting the state of the art. Problem statement was defined in this

chapter after the discussing the state of the art.

26

Chapter 4

Proposed Solution

Based on the research method presented in Section 1.2, this chapter contains the

solution proposed by this thesis. Presented in this chapter the contribution and

the explanation of how CBR is utilized as an external adaptation engine for self-

adaptive software systems. Section 4.1 has an example that will be used over this

chapter for clarification issue. Section 4.2 contains details about the knowledge base

of CRATER and Section 4.3 provides the types of managed system attributes. Sec-

tion 4.4 is the core section in this chapter that contains subsections discussing how

CRATER is structured. Section 4.5 describes how utility function is used and es-

timated in CRATER. This chapter ends with Section 4.6 that provides information

about uncertainty diminution and how CRATER deals with it.

4.1 Motivating example

This section describes a motivating example used for both explaining the solution

idea of this thesis and for the validation and experimentation of CRATER. In the

following subsections I will describe the a robot that needed to be self-adaptive along

with its requirements and utility function realization.

4.1.1 Robot system

CRATER is utilized to receive an adaptation requests and to provide adaptation re-

sponses to be applied on managed system. In order to validate and test CRATER,

I chose a robot as a managed system that demands a self-adaptive behaviour dur-

ing runtime. The idea of the robot is derived from [17] with attribute extension for

27

Chapter 4: Proposed Solution Motivating example

more realism and variety. Figure 4.1 shows an abstract view for the used robot man-

aged system. The robot’s main task is exploratory as the robot should transmit the

captured live video to a remote controlling centre. The components in Figure 4.1

Figure 4.1: Abstract View of Robot Components

are interrelated and one component may affect the another. This interrelation con-

tributes in having a set of possible states of the robot which is useful in explaining

how CRATER works. The components in the robots are:

• Power Unit: which is responsible for robot’s power management and supply

power to the other components of the robot. I consider only two attributes of

power unit namely (1) Power mode which is current operating mode like power

saving mode and (2) Power indicator which represents the available remaining

power.

• Movement Unit: which is responsible for the movement of the robot. I consider

only the speed component of this unit.

• Sensors Unit: which represents the sensing mechanism of the robot. I consider

only sensors that indicate whether there is an obstacle looming and preventing

robot during runtime, like heat and objecting mass, or not.

28

Chapter 4: Proposed Solution Motivating example

• Video Unit: which is responsible for video streaming functionality of the robot.

I consider the attributes video quality and video encryption.

• Data Backup: which is responsible for storing video in case of the communica-

tion unit fails to work.

• Communication Unit: which is responsible for the communication with the

remote centre. I assume that communication unit is used for live transmitting

the of video that the robot is capturing and works within some communication

bands such VHF and UHF.

Table 4.1: Robot attribute data sheet

Attribute Values

Communication {OFF, V HF,X − band, UHF}

Power Mode {Full Power,Medium Power, Saving Mode}

Power Indicator {Low,Medium,High}

Speed {Low,Medium,High}

Video quality {V ery low, Low,Medium,High, V ery high}

Data Backup {On,Off}

Obstacles {On,Off}

Encryption {Zig-Zag Permutation, Puer Permutation, Naive,Video En-

cryption Algorithm (VEA) }

Figure 4.1 shows some quality-related components. These components has a direct

impact on the quality of delivered service by the robot. For instance the component

”Video Encryption Technique” affects the security of the transmitted data. Similarly

the component ”Communication Band” affects quality of communication channel.

Table 4.1 shows the robot attributes set with their values. Un-adaptable attributes

are Power Indicator and Obstacles which represent a read only attribute and can not

be altered during the adaptation process. The rest are adaptable attributes and their

values can be changed during the adaptation process.

29

Chapter 4: Proposed Solution Motivating example

4.1.2 Robot goals

Generally, managed system’s goals are the functioning and quality requirement pro-

vided by the customer and related to adaptation process. The following subsections

are dedicated to explain the system goals of the robot.

4.1.2.1 Quality-related requirements

Table 4.2 shows the robot’s quality-related goals. Trade-off between the quality at-

tributes is required to provide a better overall quality of the robot. For example the

security attribute presented in Table 4.2 requires compromising when selecting one

of them because they are affected by the power unit. Table 4.3 shows all of encryp-

tion techniques along with their characteristics. Robot task is to choose one among

them according to robot’s state. This is because high security encryption techniques

requires more computational effort which requires more power consumption. This

means that the robot should choose the encryption technique that suits its state,

more precisely its power state.

Table 4.2: Robot quality requirements

Goal Descriptions

Transmission Security This goal is about keeping the transmitted data as secure as

possible. This is done by selecting one among set of encryption

algorithm as each of them has its advantages and drawbacks.

Table 4.3 shows example of trade-offs among these algorithms.

Video Quality This goal is about keeping the video quality as better as pos-

sible. This is done by selecting the appropriate video quality

during runtime. Power affects this goal as higher qualities

requires more power consumption.

Communication quality This goal is about keeping the communication channel as fit

as possible. Some communication bands requires more power

and some of them has low coverage.

30

Chapter 4: Proposed Solution Motivating example

Table 4.3: Encryption techniques characteristics

Technique Security level Encryption performance

Zig-Zag Permutation Very low Very fast

Puer Permutation Low Super fast

Naive High Slow

Video Encryption Algorithm (VEA) High Fast

4.1.2.2 Functioning requirements

In addition to the quality requirements, a set of functioning requirements are essential

for robot operation. Table 4.4 shows the functioning requirements that keeps the

robot fit and provides the required functions in terms of adaptation process.

Table 4.4: Robot functioning requirements

Goal Descriptions

Power consumption The robot should change its power mode according to power

indicator reading. If power indicator reading is ’low’ and the

power mode is ’Full power’ for example, the robot should alter

the power mode and reduce it e.g. ’Saving mode’ and reflects

this change to other components.

Robot Fitness The robot should maintain its fitness and manage the relation

between the speed and power. The robot should reduce its

speed if (1) the power is not sufficient or (2) an obstacle is

detected i.e. ’Obstacle’ attribute has a value ’true’ . The same

thing is applied on the relation between power mode and video

quality as higher video qualities requires more power.

Data backup If the communication with the remote centre is lost, the robot

should enable the data backup till the communication is on

again. This requires to reduce the video quality due to limi-

tation on the space of backup storage.

31

Chapter 4: Proposed Solution CBR knowledge base

4.2 CBR knowledge base

A knowledge base intuitively saves the cases for future retrieval process. In CRATER

the knowledge base saves the states of the managed system such that no case in the

knowledge base contains goal violations of the managed system. The correctness of

the knowledge base i.e. the knowledge base that contains only desirable states of the

managed system, is guaranteed in the retain process where no case is retained unless

it has a utility greater than UT 1. Knowledge base is modelled with domain experts by

capturing all managed system’s attributes that are related to the adaptation process.

The operation performed on the knowledge base is restricted to (1) case retrieval

and (2) case retain. An advantage of the knowledge base is that the domain expert

can investigate it for offline maintenance i.e. add new cases, remove cases and alter

cases. The cases stored in the knowledge base always have a utility value greater than

UT. This facilitates the retrieval process and provides always an efficient adaptation

response that saves the system from running in unwanted sates. The quality of cases

stored in the knowledge base can be controlled by retaining only cases which have

utility greater than certain value. This option is vital in keeping the knowledge

base effective and efficient. Based on the example in section 4.1 the knowledge base

contains a set of cases that holds the values of robot attributes operating in desired

states which means they have utility greater than UT.

4.3 Managed system attributes

Managed system operating states and configurations are modelled as CBR cases. Each

case has a set of attributes that have both types and weights as will be explained in

the following subsections.

4.3.1 Attribute types

Case attributes can be flagged as one or more of the following types in Table 4.5

assuming that no attribute can take two contradicting types e.g. Adaptable and Un-

adaptable at the same time. Utility threshold breaker attribute type is used during

the analysis process of the managed system state because the adaptation process

will alter the values of these attributes. Utility antagonist attribute type is used to

1see Section 1.3 for the definition of Utility Threshold

32

Chapter 4: Proposed Solution Managed system attributes

indicate the attributes that contributes in reducing the utility of the managed system.

Utility antagonist can be used in CRATER to provide the best adaptation response.

Table 4.5: Managed System Attribute Types

Attribute Type Description

Adaptable Denotes an attribute whose value can be changed during the

adaptation process like Speed attribute.

Un-adaptable Denotes an attribute whose value can not be changed during

the adaptation process like Obstacles attribute.

Utility threshold breaker Denotes an attributes whose value contributes in providing

goal violating state.

Utility antagonist Denotes an attribute whose value contributes in decreasing

the utility of the managed system.

4.3.2 Attribute weight

It is normal that attributes do not have the same effect on the managed system state.

Some of the managed system’s attributes have greater effect than the others. Based

on that, Pareto principle [29] is considered and each attribute is weighted in order to

provide optimal representation and modelling for the state of the managed system.

In addition, attributes weighting is an essential process for two reasons:

• If the adaptation request has un-adaptable attribute among the UT breaker

attributes then we can only change the adaptable attribute values. CRATER

knows how to do that my means of weighting. All un-adaptable attributes

must have values grater than the adaptable attributes values. This directive

modelling helps CRATER to provide a meaningful and applicable adaptation

response for the managed system.

• Weighting is essential also in quantifying and measuring uncertainty in adapta-

tion request.

33

Chapter 4: Proposed Solution CBR as adaptation engine

4.4 CBR as adaptation engine

The main idea of this thesis is using case-based reasoning (CBR) as an external

adaptation engine. This idea is inspired form the compatibility between CBR life cycle

discussed in 2.3.2 and shown in Figure 2.2 from one side and the closed control loop

and adaptation process discussed in 2.1 and shown in Figure 2.1. More precisely the

CBR engine works as the process Deciding in Figure 2.1 which is an important process

in the self-adaptation process that provides the adaptation actions. CBR is used as

external adaptation engine that embraces the knowledge base of the self-adaptivity

related attributes of the managed system. This external adaptation engine receives

adaptation request and responds with adaptation response as will be described in

the next sections. The novelty of CRATER is that it utilizes not only the similarity

measures but also the utility functions in both the assessment of the retrieved cases

from the knowledge base and in constructing new adaptations. The use of utility

functions enables CRATER to startup from empty knowledge base which represents

a challenge in the applications of CBR.

Figure 4.2 shows the mechanism of CRATER and how it works. In the following

subsections I will present detailed information about each the components in that

figure.

4.4.1 Adaptation request

As explained in Section 1.3, the adaptation request is a managed system’s state that

violates the managed system’s goals. Adaptation requests are sent in reality when

the system enters or reaches unwanted state which should be overcame by the system.

Adaptation requests in CRATER contain the attributes of the managed system at the

point of the violation. This means that CRATER treats self-adaptivity in a reactive

or proactive way depending on the implementation of monitoring process. Concisely,

adaptation request Areq is a set of attributes {A1, A2,, An} that represents the

managed system at adaptation initiation point. A subset of these attributes are

adaptable attributes. Adaptation request in CRATER is any state that breaks the

UT 2 of the managed system. Adaptation request is sent to the adaptation engine,

which is the CBR engine, in order to do the adaptation process on it. So as to provide

adaptation request, a monitoring process is needed as shown in Figure 2.1. The task

of the component observe and decide is to monitor the managed system and detect

2section 4.5 provides details about system utility

34

Chapter 4: Proposed Solution CBR as adaptation engine

Figure 4.2: CRATER Reference Model

35

Chapter 4: Proposed Solution CBR as adaptation engine

if there is a violation in the state of the managed system. If the monitor detects

a violation then an adaptation request is formed by collecting managed system’s

attributes’ values and pass them to the CBR engine as adaptation request. An example

of adaptation request is {Power 7→ Full power, Video Streaming quality 7→ Very

High, Obstacles 7→ True, Speed 7→ Fast}. This is a robot state that contains a set of

values for a robot system’s attribute. This state represents unwanted operating state

assuming that the robot speed should not be fast if an obstacle is detected. This

state is a typical adaptation request because of goal deviation which is a utility value

breaking the utility threshold.

4.4.2 Adaptation response

Adaptation response is the result of the adaptation process generated by the CBR

engine. It is an object that contains a corrective operating state that rescue the

managed system from its violating state. Adaptation response must have a utility

greater than UT value. Obviously the adaptation response with greater utility value

is better. To apply the adaptation response, an execute component is mandatory. If

the adaptation response succeed in overcome the UT of the managed system, this

adaptation response is retained in the knowledge base for future use. An adaptation

response for the adaptation request in the previous section is {Power 7→ Full power,

Video Streaming quality 7→ Very High, Obstacles 7→ True, Speed 7→ Slow}. It is

obvious that the cause of unwanted state is the high speed while detecting an obstacle.

The corrective adaptation response changes the speed to Slow which raises the utility

of the robot and make it greater than UT.

4.4.3 Adaptation process

Adaptation process is the process that starts when the CBR engine receives adapta-

tion request and ends with providing adaptation response. Algorithm 1 summarizes

this process. The following subsections describes in details the adaptation process.

4.4.3.1 Analysing adaptation request

When the CBR adaptation engine receives an adaptation request it analyses it to

identify attributes that causes UT break and attributes that abate the managed

system utility. This identification helps in providing efficient adaptation response by

36

Chapter 4: Proposed Solution CBR as adaptation engine

Algorithm 1 CRATER adaptation process

Require: KB , Areq

Ensure: Utility(Ares) > UT

1: List cases ⇐ Retrieve (KB,Areq)

2: List qualifiedAdaptationFrame

3: Case Ares

4: while Case c ⇐ Iterate(cases) do

5: if Sim(Areq,c) ∈ [1,β] then

6: qualifiedAdaptationFrame.add(c)

7: end if

8: end while

9: if qualifiedAdaptationFrame is not Empty then

10: Ares ⇐ max(CaseExpediency(qualifiedAdaptationFrame))

11: Return Ares

12: else

13: Ares ⇐ ConstructiveAdapt(Areq)

14: Retain(Ares,KB)

15: Return Ares

16: end if

37

Chapter 4: Proposed Solution CBR as adaptation engine

changing the values of these two types of attributes to get higher utility as much as

possible.

4.4.3.2 Case retrieval

Case retrieval is a CBR core functionality. We retrieve the most similar case or

cases to the adaptation request. The adaptation request is formulated by excluding

adaptation request’s attributes that break UT form retrieval calculation process. This

exclusion is inevitable because the knowledge base keeps only the best operating

states which mean that no case in the knowledge base has attribute values that break

UT. Then exclusion becomes logical because by doing it the similarity between the

adaptation request and cases stored in the knowledge base becomes more realistic. An

example for excluded attribute based on the example in section 4.1 is Speed attribute.

This is because the speed causes the robot utility to break utility threshold. Even

though both Speed and Obstacles contribute in breaking the UT, we exclude just

speed attribute because it is adaptable attribute unlike the obstacle attribute which

is not adaptable.

4.4.3.3 Constructing QAF

The retrieval process for adaptation request AdaptationReq returns a set of cases CK

such that each case Ck in this set satisfies the condition:

β ≤ Sim(Ck, AdaptationReq) ≤ 1 (4.1)

where β is a value between [0,1] that represents the minimal similarity value

for accepting retrieved cases from the knowledge base and Sim is a function that

calculates the similarity between the adaptation request and each retrieved case. Sim

function is implemented in the CBR engine implementation [2]. The set of cases that

satisfies the previous condition are called Qualified Adaptation Frame. So β is the

sufficient similarity for qualifying a case to the qualified adaptation frame. Integrating

β has the advantages: (1) it provides an alternative options by providing more than

one case in the provided qualified adaptation frame (2) exclude non-related cases to

the adaptation request and (3) utilizes the knowledge in the similar cases because

the similarity is not the only decisive criteria in providing the adaptation response

as the utility of the case is also important. Suppose that a PC recommender system

38

Chapter 4: Proposed Solution CBR as adaptation engine

utilizes both CBR and utility. The user of the system demands a customized PC

with 3GB of RAM. The result of the retrieval returns two identical PCs except the

amount of RAM. The first result has similarity 100% to the user query with 3GB of

RAM and 0.95 utility and the second result has similarity 97% with 4GB of RAM and

0.98 utility. It is obvious that even the first result is what the customer wanted from

the beginning, but he/she could be interested in the second PC where the amount

of RAM is more which increases the utility. This is why an integration between the

similarity and the utility should be considered when choosing the adaptation response

case from the qualified adaptation frame. The combination between the similarity

and the utility is called case expediency. If we want to consider only the identical

case i.e. cases with similarity of 100% to the adaptation request then we set β to

one. In this situation the qualified adaptation frame will contain only a case with

100% similarity to adaptation request if exists in the knowledge base. As shown in

algorithm 1 the returned case i.e. the adaptation response is the case that satisfies the

previous condition in equation 4.1 i.e. it is in the qualified adaptation frame and has

the highest expediency. The expediency of a case in the qualified adaptation frame

is calculated in CRATER by Equation 4.2:

CE(c)QAF = 1− [(1− sim(Adapreq, c)) ∗ utility(c)] (4.2)

where CE is the case expediency for a case c in the qualified adaptation frame

and sim is the similarity between the adaptation request Adapreq and the case c.

Equation 4.2 returns one if the similarity is one which represents the heights level of

similarity and of course the utility is greater than the utility threshold as all cases in

the knowledge base have utilities greater than utility threshold. If the utility is one

then the case expediency value equals the similarity value. This novel combination

in calculating case expediency is crucial:

• On the one hand the inclusion of similarity of the retrieved case in calculating

case expediency is important as higher similarity leads to less changes in the

managed system state which is an important issue. If the similarity equals

one, which means that the Adapreq and the case c are identical, then the case

expediency is one.

• On the other hand the inclusion of the utility of the case is not less important

than similarity inclusion that is because the utility reflects the quality of meeting

managed system’s goals.

39

Chapter 4: Proposed Solution CBR as adaptation engine

Noting that all cases in the knowledge base represents a non-violating states, re-

trieving cases that are not utility breaker is realized by default and the adaptation

process always returns a case with utility greater than UT. If β is set to 1 then the

qualified adaptation response is the case that has similarity of one and certainly a

utility greater than UT. In this case if the qualified adaptation frame is not empty, it

contains only one adaptation response that is unique because the knowledge base will

not save two identical cases. This is guaranteed by the nature of CRATER mecha-

nism as CRATER do not generate new case unless the knowledge base fails to provide

the required adaptation response. So only the newly generated case is saved in the

knowledge base.

4.4.3.4 Generate adaptation response

If no case satisfies the previous condition e.g. the qualified adaptation frame is empty,

CRATER will generate the adaptation response based on the utility function by

adapting the adaptation request attributes in order to provide a case with utility

greater than UT. This is done with the help of the previously identified attributes

that break UT. This process is called Utility-guided constructive adaptation which

has two flavours:

• First Fit Heuristic: It is a normal iterative search process in the space values of

the attributes [30] applied on the adaptation request that breaks UT. The first

values that cause the utility of adaptation request greater than UT is returned

as adaptation response and the search stops. Algorithm 2 explains this type of

adaptation.

• Best Fit Heuristic: Which is an extension of the first fit heuristic with extra

capability that is the search process finds values that maximize the utility of

the adaptation response. Algorithm 3 explains this type of adaptation.

If the adaptation response is generated by one of the previous ways, the utility of

the generated case is considered as the expediency.

4.4.3.5 Retain

Retain phase is restricted to the newly generated adaptation response from the Utility-

guided constructive adaptation process. Because all generated adaptation response

40

Chapter 4: Proposed Solution CBR as adaptation engine

Algorithm 2 First Fit Heuristic Constructive Adaptation

Require: Areq , KB

Ensure: Utility(Ares) > UT

1: Case Ares

2: List UTbreaker ⇐ Analyse(Areq)

3: while (AttributeValue av ⇐ Iterate(Values(UTbreaker))) do

4: Ares ⇐ apply(Areq ,av)

5: if Utility(Ares) > UT then stop

6: end if

7: end while

8: Retain (Ares,KB)

9: Return Ares

Algorithm 3 Best Fit Heuristic Constructive Adaptation

Require: Areq , KB

Ensure: Utility(Ares) > UT

1: Case Ares

2: utilityValue ⇐ 0

3: List UTbreakerAttributes ⇐ Analyse(Areq)

4: while (AttributeValue av ⇐ Iterate(Values(UTbreakerAttributes))) do

5: Case temp ⇐ apply(Areq ,av)

6: if Utility(temp) > utilityValue then

7: utilityValue ⇐ Utility(temp)

8: Ares = temp

9: end if

10: end while

11: Retain (Ares,KB)

12: Return Ares

41

Chapter 4: Proposed Solution Utility function

from both first fit and best fit has a utility greater than UT, they are qualified for re-

taining in the knowledge base for future reuse. It is clear that CRATER is able start

operating with empty knowledge base which considered an advantage. The utility

function governs the learning process which guarantees the quality of retained cases.

During the runtime of CRATER, the number of retained cases in the knowledge base

will increase which raises likelihood of returning adaptation response instead of gen-

erating it from scratch. This has a positive impacts on the performance of CRATER

and reduces the response time significantly. Figure 4.3 depicts the adaptation process

performed by CRATER as a flow chart.

4.5 Utility function

This section provides information and details about utility function and how it is used

in CRATER. The following subsections contains intensive explanation of that.

4.5.1 Utility function importance

Utility function is used in CRATER to capture system goals. I combined the utility

function concept in the functionality of CRATER in order to:

• Incorporate functional and quality requirement assessment for the cases.

• Provide a heuristic for the adaptation generation process.

• Provide affirmation regarding the adaptation response usefulness and expedi-

ency.

• Analysis the adaptation requests in order to identify UT breaker attributes.

• Determine the managed system desirable and undesirable states which are cru-

cial for the adaptation process.

4.5.2 Utility function definition

Utility functions represents the heuristics for both (1) identifying the cause of adapta-

tion request by inspecting the managed system attribute or attributes that originate

this adaptation request and (2) generating adaptation requests in CRATER. Basically

42

Chapter 4: Proposed Solution Utility function

Figure 4.3: Adaptation Response Estimation Flow Chart
43

Chapter 4: Proposed Solution Utility function

utility function is a function that maps a set of attributes to a value if certain condi-

tion holds. Normally the certain condition represents attributes satisfactory values.

For a simplicity, the utility function definition in this thesis is elaborated based on

the work in [25] and extended in order to combine multiple utility-involved attributes.

Generally, the utility function in CRATER is defined in Equation 4.3 an looks like:

Utility(a1 ,...,ai) =

v1 if condition1 holds

v2 if condition2 holds

.

.

vn−1 if conditionn−1 holds

vn Otherwise

(4.3)

where:

• (a1,...,ai) is the set of involved managed system attributes for this utility func-

tion.

• (v1,...,vn) are the values of the utility function.

• (condition1,...,conditioni−1) is a set of condition for satisfying the utility func-

tion.

4.5.3 Utility function weight

In reality the adaptation involved attributes in the managed system can be repre-

sented by more than one utility function due to the correlated effects among attribute.

As a result one attribute can be involved in more than one utility function. Weighting

these utility functions is a crucial issue in modelling managed system goals. Weight-

ing process simply attached a weight to each of the utility functions. The more the

weigh is the more important this utility function is. Weighting process normally is

the task of the domain expert.

4.5.4 Overall utility function

If the managed system’s goals has been captured as many utility functions then we

need a solution for finding the overall utility of the managed system in terms of its

utility function. Weighted Geometric Mean (WGM) is used for that end because the

44

Chapter 4: Proposed Solution Utility function

WGM is affected by all utility function values and also works if one of the utility

values is zero. If we have a set of utility functions values U = {u1, u2, ..., un} with

corresponding weights W = {w1, w2, ..., wn} then the overall utility is estimated by

the following equation:

Uoverall = (
n
∏

i=1

uwi

i)1/(
∑

n

i=1
wi) (4.4)

4.5.5 Utility function examples

As explained earlier the utility function is used mainly to capture managed system

goals. In this section I will present examples of utility functions used to represent

robot’s goals explained in Section 4.1.2.

An example of utility function looks like:

Utility(Speed,Obstacles) =

0.1 if(Speed=High and Obstacles=True)holds

0.8 if(Speed=Medium and Obstacles=False)holds

1 Otherwise

(4.5)

In the example shown in Equation 4.5, assuming that utility threshold is 0.1, the

utility value of this utility function equals 0.1 if the robot’s speed is HIGH and the

robot detects an obstacle in the surrounding which is represented by TRUE value

for the attribute obstacles. Utility function values normally should have values [0,1]

where 0.1 value represents a violation of system goals and one represents the ideal op-

eration state. If the utility value is less than or equal UT then the state of the system

at this point represents an adaptation request and the attributes involved the utility

function that has UT breaker value should be changed to get rid of the cause of viola-

tion. In our example if we want to react to the adaptation request generated because

of the Utility(speed,obstacle) utility function then it is obvious that we can not change the

obstacle attribute because it is not adaptable attribute and we can only change the

value of speed. Logically we have to reduce the speed of robot and make it Medium or

Low depending on what value will make the higher utility. The otherwise condition in

the example makes the speed value Low to provide maximum utility for this function.

45

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

Utility(PM,V Q) =

0 if(PM=1 and (VQ=5 or VQ=4))holds

0.4 if(PM=1 and VQ=3)holds

0.5 if(PM=2 and (VQ=5 or VQ=4))holds

0.99 Otherwise

(4.6)

The utility function described in Equation 4.6 represents the relation between Power

Mode and Video Quality. If the power mode is 1 i.e. ’Low’ and the video quality

is ’Very High’ or ’High’ then the value of the utility function is zero. Similarly, if

the power mode is ’Low’ and the video quality is ’Medium’ the value of this utility

function is 0.4. Zero utility functions represents a robot state where an adaptation

is required. The zero value of any utility function cause the overall utility function

equals to zero because I use Weighted Geometric Mean for calculating the overall

utility as described in Section 4.5.4. Each utility function has a weigh to represent its

effect. The utility function can describe the behaviour of one attribute and also the

relationship between two attributes or more. The utility function can represent the

relation among n attributes. For example if we want to represent the utility function

among the attributes {Power Mode, Video Quality, Transmission Security} then the

utility function for these three attribute looks like Equation 4.7:

Utility(PM,V Q,TS) =

0.1 if(PM=3 and (VQ=1 or VQ=2) and TS=1) holds

0.5 if(PM=2 and VQ=2 and TS=1) holds

0.8 if(PM=1 and VQ=3 and TS=3) holds

0.99 Otherwise

(4.7)

Thus the nature of the utility function definition in CRATER enables incorporat-

ing many attributes which provides a comprehensive way in capturing the managed

system goals. The rest of the utility functions of the robot is defined in the same

manner. It is normal to have more than one utility function with utility value less

than or equal UT breaker value. All UT breakers should be handled and resolved in

order to provide efficient adaptation response.

4.6 Uncertainty diminution in CRATER

Uncertainty is a challenge that hinders the adaptation process. In order to continue

in this section I need to figure out some assumptions and intuitive issues regarding

46

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

uncertainty handling in CRATER:

• Exact utility of the managed system state is not deterministic in the presence

of uncertainty. Instead all possibilities of uncertain data should be considered

for providing efficient handling of uncertainty.

• In order to evaluate and handle uncertainty in the managed system state we

need to measure uncertainty. This measurement is important as it provides

directives for the adaptation process under uncertainty.

• Needless to emphasis that raising the utility of the managed system is an ul-

timate goal particularly in CRATER. If CRATER faces uncertain state of the

managed system then it tries to find the best adaptation response that raises

the utility of the managed system.

4.6.1 Uncertainty handling

Generaly there is two ways in dealing with uncertainty in the context of utility func-

tion:

• Optimistic Paradigm: Which deals with the uncertain values as values that

heighten the utility.

• Pessimistic Paradigm: Which deals with the uncertain values as values that

belittle the utility.

Even though both of these two paradigms has its own advantages and drawbacks,

but they do not provide an effective way of handling uncertainty particularly if more

than one attribute in the uncertainty-concern object has uncertain values. CRATER

follows a Hybrid Paradigm where it analysis the uncertain situation for better and

efficient adaptation by:

• Analysing the uncertain managed system state and construct a tree of all pos-

sible states and then calculates overall uncertainty η.

• If at least one of the elements of this tree represents adaptation request i.e. a

state that breaks the UT, then CRATER issues adaptation process.

• The issuance of adaptation process under uncertainty can be controlled in

CRATER via η i.e. if η is one then CRATER behaves pessimistically while

47

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

when η is zero CRATER behaves optimistically. Normally η has a value greater

than zero and less than one and CRATER considers only uncertainties less than

or equal this value.

According to the three dimensions of uncertainty discussed in Section 2.2 the

following subsections show how uncertainty is classified, quantified and handled in

CRATER.

4.6.2 CRATER’s uncertainty location

Uncertainty location is the location where uncertainty appears. It is important to

locate uncertainty in order to measure and diminish it. More specifically uncertainty

appears within CRATER model in (1) the adaptation request attributes’ values in

the adaptation requests and (2) in the qualified adaptation frame. The former is due

to knowledge shortage in the adaptation request attributes values. This could be due

to environment reasons or managed system measurement errors in providing known

values. The later is due to variability in adaptation responses in case that we have

more than one adaptation response in the qualified adaptation frame with the same

case expediency. This means that CRATER is uncertain regarding which case to

return as adaptation response among cases in the qualified adaptation frame.

4.6.3 CRATER’s uncertainty level

Uncertainty level is a quantification for uncertainty. In CRATER we need to specify

the degree of uncertainty in all locations it appears in e.g. the adaptation request

and in the qualified adaptation frame in order to consider and handle it later on the

adaptation process.

4.6.3.1 Adaptation request uncertainty

The uncertainty in the adaptation request is a result of uncertain state of the managed

system. If the managed system has uncertain values at least in one of its attributes

then we need to know if this state demands an adaptation process or not. In order

to perform that we need to analyse the managed system’s state. Suppose one of

managed system attributes has uncertain values represented by question mark ’?’.

The analysis process converts this state into set of states that contains all possible

states by replacing the question marked values with all possible values assuming the

48

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

managed system has a predefined values space for all attributes. For example if the

managed system is modelled as set of attributes {A1, A2, A3, A4} and each attribute

has a set of possible values {1, 2, 3}. Managed system state could be {1, 1, 2, 1} which

represents a state with certain values i.e. certain state. However, for some reason the

state of managed system could be {?, 1, 3, 2} which represents a state with uncertainty.

This sates requires the analysis process in order to check whether this state holds an

adaptation request or not and what is the probability of that. To perform this process,

we need to make all possible states out of this uncertain state which is the set κ of all

combinations: {{1, 1, 3, 2}, {2, 1, 3, 2}, {3, 1, 3, 2}}. The next step is to estimate the

utility of each state in κ in order to determine the number of states ℜ that requires

adaptation process e.g. UT breaker states. CRATERS perform adaptation for any

state in κ that breaks the utility threshold and chooses the case with maximum case

expediency as an adaptation response. Choosing the highest adaptation expediency

among all adaptation responses is based on the assumption discussed above that the

ultimate goal is to raise the utility of the managed system. After this explanation

we can quantify two things: (1) the adaptation request ratio (µ) of managed system

uncertain state and (2) the degree of uncertainty in the managed system state.

Adaptation request ratio (µ) is a value ∈ [1, 0] and determined as shown in Algo-

rithm 4 by the following equation:

µ =
ℜ

Size(κ)
(4.8)

The uncertainty degree in the managed system state (Θ) is a value ∈ [1, 0] and

estimated by:

Θ =
#uncertain attributes

#all state attributes
(4.9)

Equation 4.9 returns zero if there is no attribute in the adaptation request with

uncertain values. It returns one if all attributes of the adaptation request are uncertain

values.

It is important also to estimate the overall uncertainty η in the managed system state

with uncertain values. If (µ) equals one, which means that all states in the set (κ) are

utility threshold breakers, this means that it is the highest level of uncertainty in the

managed system state and makes (η) equals also one. The same reasoning is applied

on (Θ) which means that if (Θ) is one i.e. all attributes of the managed system state

49

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

Algorithm 4 Estimating µ

Require: UncertainState S

Ensure: S has uncertain values

1: List κ ⇐ PossibleStates(S)

2: ℜ ⇐ 0

3: while κ has more elements do

4: State temp ⇐ Next(κ)

5: if Utility(temp) ≤ UT then

6: increment ℜ

7: end if

8: end while

9: Return
ℜ

Size(κ)

are uncertain, and then (η) is one also. Based on this argument (η) is calculated in

CRATER by the following equation:

η = 1− [(1− µ) ∗ (1−Θ)] (4.10)

The overall uncertainty(η) is useful in providing insights regarding (1) uncertainty

in the managed system state and (2) the appropriateness of adaptation response. The

overall uncertainty (η) is a variable in CRATER model. This means that CRATER

will issue adaptation process if the managed system uncertain state’s (η) estimation is

less than or equal a predefined value e.g. if (η) equals 0.8 in CRATER configurations

and the managed system state’s (η) value is greater than 0.8 then no adaptation

is issued due to high percentage of uncertainty. Determining (η) is crucial issue

because it directs CRATER when to issue adaptation process if the managed system

state is uncertain and to avoid risky adaptations. Suppose (η) value in the managed

system state is 0.99 which means that the managed system uncertainty is too high

which contributes in (1) bigger variety of possible states and (2) more processing and

computation done by the adaptation engine. By limiting (η) to some value e.g. 85%

CRATER managed to provide adaptation response at reasonable response time.

4.6.3.2 Uncertainty in qualified adaptation frame

Uncertainty in the qualified adaptation frame occurs if there exist more than one

case satisfying the highest expediency. For example if the qualified adaptation frame

50

Chapter 4: Proposed Solution Summary

has two states with (similarity,utility) of (0.95,0.8) and (0.9,0.4). Based on the

Equation 4.2 both cases have the same case expediency which is 0.97. This situation

represents uncertainty for CRATER and the selected case is the case with the higher

utility because the ultimate goal of the adaptation process is to raise the utility of

the system as much as possible as assumed in Section 4.6. The uncertainty in the

qualified adaptation frame is estimated in CRATER by the following equation:

UQAF =
N

Size(QAF)
(4.11)

where N is the number of cases with identical highest expediency.

4.7 Summary

This chapter covered in details the idea solution part of this thesis. A motivating

example was presented to illustrate the need of self-adaptivity. A detailed description

of the proposed solution was discussed in this chapter including how CBR is utilized

as an adaptation engine and the managed system attributes modelling. The usage

of utility function in CRATER was introduced in this chapter describing how it is

utilized to represent the managed system’s goals. Uncertainty handling in CRATER

was also presented in this chapter. Uncertainty quantification, uncertainty location

determination and uncertainty degree were presented and explained in the CRATER

uncertainty handling mechanism.

51

Chapter 5

Implementation

This chapter provides details regarding the implementation of CRATER. Section 5.1

contains information about the implementation and the architecture of CRATER.

Section 5.2 provides information about the generation of adaptation requests and

Section 5.3 explains how the monitoring process is implemented. Section 5.4 illus-

trates the implemented classes while Section 5.5 shows the used tools in the develop-

ment process. This chapter ends with Section 5.6 which describes how uncertainty is

realized, injected and dealt with in the prototypical implementation of CRATER.

5.1 CRATER architecture

This section describes a prototypical implementation of CRATER framework. Fig-

ure 5.1 shows the execution view of CRATER’s architecture. In the following subsec-

tions I will explain in more details the components included in that figure.

5.1.1 Knowledge base modelling

Knowledge base can be modelled in many forms. Due to the selected case-base rea-

soning implementation [2], the knowledge base is modelled as Tab Separated Values

(TSV) file. This file hold the cases that are ready to be adaptation response. Fig-

ure 5.2 illustrates how the knowledge base looks like. The cases in the knowledge

base can be defined by the domain expert in addition to the newly learned cases. In

the experiment I will start from empty knowledge base.

52

Chapter 5: Implementation CRATER architecture

Figure 5.1: CRATER’s Architecture: Execution View

5.1.2 CBR engine

CRATER utilizes the Case-based reasoning artificial intelligence technique. CRATERS

uses CBR as an adaptation engine as described in Chapter 4. To that end, I used an

open source CBR implementation [2] that provides basic functionalities of case-based

reasoning like case retrial and similarity calculations. The component Retrieve in Fig-

ure 5.1 is implemented by [2]. The two other components, Adapt/Reuse and Retain

is an addition by me to the work [2] and explained in the following subsections.

5.1.2.1 Adapt/Reuse component

This component is responsible for providing the adaptation response for the execute

and retain components. The process of this component works as follow:

• The retrieval component is responsible for returning the similar cases as de-

scribed in Chapter 4 that satisfies the β condition and initialize the Qualified

Adaptation Frame.

• If the qualified adaptation frame is not empty, then this component returns the

case with the highest expediency.

• Otherwise, due to empty knowledge base or not satisfactory case exist in it, the

adaptation is generated by a First fit heuristic algorithm 2

53

Chapter 5: Implementation CRATER architecture

Figure 5.2: Knowledge Base Snippet

54

Chapter 5: Implementation Adaptation request

Figure 4.3 depicts this process as a flow chart.

5.1.2.2 Retain component

Retain is simply preserving a the new generated case in the knowledge base. Retain

component has access to the knowledge base to save the new cases. It is obvious that

no duplication occurs in the knowledge base because the retain process is limited only

for cases which are generated constructively after the β condition is not satisfied in

the QAF.

5.2 Adaptation request

As described in Chapter 4 adaptation requests are managed system’s states that

requites adaptation. In order to perform this in the experiment for the robot system,

adaptation request are generated randomly. The generation process produces robot’s

states that requires adaptation i.e. robot states with overall utility less than or equals

0.5. The generation process iterates the robots attributes and randomly select a value

from its value spaces. After selecting a value for all attributes, the process estimates

the utility of the generated case and return it if its utility is zero. Otherwise the

process continues till finding a utility breaker case. The adaptation request generator

component does also the functionality of monitor and decider as it can decide whether

the robot’s state violates its goals or not.

5.3 Monitoring

Monitoring functionality is implemented in the prototype by the adaptation request

generator. This is because the adaptation request generator provides only robot states

with utility less than or equal UT e.g. less than zero. This functionality is the same

thing as the monitoring process as monitoring will issue adaptation process when it

the robot state’s utility is less than or equal 0.5.

5.4 Main classes

Figure 5.3 illustrates the main classes and their interrelations used in the implementa-

tion of CRATER’s. I will describe abstractly these classes in the following paragraph:

55

Chapter 5: Implementation Development tools

• RobotDataSheet: This class maintains the robot’s value for each attribute. It

has also some methods for retrieving the values of attributes for both generating

the adaptation requests and adaptation generation.

• RobotState: This class is a centric one. It keeps the robot’s attributes as a set

of instances of class RobotAttribute.

• RobotAttribute: This class keeps the name, the value, the weigh and the type

of attribute1.

• RobotUtiltiy: This class calculates the utility of the robot i.e. using RobotState

object. Each utility is represented by the class UtilityFunction.

• UtilityFunction: This class represents one utility of the robot. Each instance of

this class has name, value and weight.

• Configuration: This class saves the values for CRATER e.g. β, adaptation

requests number, utility threshold and some other values for the CBR engine.

• AdaptationController: This class is responsible for doing the adaptation process.

It uses the QualifiedAdaptationFrame class for processing the retrieved cases

from the knowledge base and FirstFitHeuristic class which is responsible for

doing the constructive adaptation.

• ReturnCaseObject: This class is an extension of the class RobotState. It is just a

RobotState with extra attribute for similarity value. This similarity is returned

form the retrieval process and is essential for the case expediency calculation.

• Retain: This class is used by FirstFitHeuristic class and is responsible for saving

the new generated cases in the knowledge base.

5.5 Development tools

I used Java Development Kit (JDK) [3] version 1.7 for developing the application.

The CBR implementation [2] is also a Java application. I also used NetBeans IDE

[4] as development environment.

1Attribute types are described in Table 4.5

56

Chapter 5: Implementation Uncertainty

Figure 5.3: Main classes of CRATER

5.6 Uncertainty

As discussed in Chapter 4 uncertainty is represented in robot’s attribute values as

’?’. This uncertainty could be due to the unknown values or the absence of values at

all. Figure 5.4 illustrates some basic classes used to realize uncertainty. These classes

contains:

• UncertainStateGenerator: This class is responsible for randomly generating

robot states that contain some uncertain values with the help of class Un-

certainRobotDataSheet. This class represents uncertainty-injector.

• UncertainRobotState: This class depicts a robot state that has a uncertain

values. This class is centric one because it manipulates a list of states that

represent possible states derived from the uncertain state. In addition it has

the calculations for µ, Θ and η.

• UncertainCaseAnalyser: This class decompose the uncertain state into all

possible certain states for next steps processing and it is used by the class

UncertainRobotState.

• UncertainCraterController: This class is an extension of class AdaptationCon-

troller described above. It provides the mechanism of adaptation in the presence

of uncertainty.

57

Chapter 5: Implementation Summary

Figure 5.4: Uncertainty handling classes

5.7 Summary

This chapter showed the prototypical implementation overview of CRATER. This

chapter described also how every component of CRATER is implemented. The im-

plementation presented in this chapter included how the adaptation requests were

generated randomly. Development tools and class diagrams for the implementation

were presented in the context of implementation explained in this chapter.

58

Chapter 6

Experiment and Results

This chapter is intended to provide the experimental evaluation as proposed in the

research method in Section 1.2. This chapter provides information about the vali-

dation and evaluation of CRATER in the light of the motivating example described

in Section 4.1. This chapter starts with Section 6.1 that describes the experiment

settings and continues with Section 6.2 that gives information about the derivation

process of the metrics used for the evaluation and validation process. Section 6.3

embraces the results obtained form the experiment with extensive figures and infor-

mation. This chapter ends with Section 6.4 that discuss the experiment’s internal

and external validly.

6.1 Experiment setup

The validation of CRATER is done in a binary validation paradigm. In order to

validate CRATER, an experiment is conducted based on the motivating example

described in Section 4.1 and implemented as explained in Chapter 5. The experiment

was performed under Windows 8 (x64) machine with 4 GB of RAM and CPU Intel

CORE 2 Duo (P7750) 2.26 GHz.

6.1.1 Design decisions

CRATER requires some configuration that needed to be set before working. These

design decisions include:

• Utility threshold is 0.5. Choosing this value give the chance to show CRATER’s

ability in providing adaptation with greater utility.

59

Chapter 6: Experiment and Results GQM-based metrics

• β is 90% unless otherwise stated. This value is suitable to show how CRATER

construct cases and retrieve them from the knowledge base in the experiment.

• First fit heuristic is used in the implementation of the prototype. This is the

provided implementation by the this prototypical implementation.

• In the experiment, CRATER starts with empty knowledge base which enhances

the validation of the generative adaptation process.

• η is 85% unless otherwise stated.

6.1.2 Experiment nature

In order to perform the experiment, CRATER is subjected to seven successive runs.

Each run contains 50 randomly generated adaptation requests as explained in Sec-

tion 5.2. Seven runs were selected because they provide all important results and

after that the results have insignificant effects.

6.2 GQM-based metrics

This section provides the related quality metrics for CRATER in the context of the

motivating example described in Section 4.1. Adaptation-related metrics are formu-

lated for evaluating CRATER based on GQM approach [39]. Goal-Question-Metric

[39] is utilized in order to derive the related metrics for the validation purpose. In the

following subsections software quality metrics are elaborated for evaluating CRATER.

6.2.1 Adaptation engine performance

Figure 6.1 shows the GQM sheet for identifying the performance CRATER adaptation

engine. Two metrics are evolved and explained in the following subsections.

6.2.1.1 Adaptation remembrance

Remembrance implies making use of the previous performed adaptations instead of

constructing the adaptation response from scratch each time. This property has

a positive impacts on the performance of the adaptation engine. Remembrance is

60

Chapter 6: Experiment and Results GQM-based metrics

Figure 6.1: GQM Sheet for Adaptation Performance Goal

done using the knowledge base which contains the successful performed adaptations.

Adaptation remembrance can be estimated by the following equation:

Adaptation remembrance =
#Adaptations retrived from KB

#All Adaptations
(6.1)

6.2.1.2 Adaptation response time

The response time is traditional metric for performance evaluation. In CRATER

the response time of the adaptation process is the elapsed time between receiving

adaptation request and providing the adaptation response. The average response

time for CRATER is estimated by the following equation:

Average Response T ime =

∑n
i=1Response T ime(n)

#All Adaptations
(6.2)

6.2.2 Adaptation expediency

Figure 6.2 shows the GQM sheet for providing an expedient and efficient adaptation

response. I define expedient adaptation as the adaptation process that successes

to rescue the managed system from undesirable states to desirable states in order

to keep the keep the system goals satisfied including functional and non functional

61

Chapter 6: Experiment and Results Results

Figure 6.2: GQM Sheet for Adaptation Expediency Goal

requirements. This is done by providing adaptation responses with utility greater

than the UT. Adaptation expediency is quantified by the following equation:

Adaptation Expediency =
#Expedient Adaptations

#All Adaptations
(6.3)

CRATER aims to provide an adaptation response with the highest possible utility. If

CRATER always provides an expedient adaptation response each time then the adap-

tation expediency in Equation 6.3 equals one. However in some cases the managed

system resources decrease overtime which affects the quality of the service provided

by other components. CRATER has nothing to do in this case as CRATER has no

authority on the resources of the managed system. Instead CRATER will provide

an adaptation response with the highest possible utility. For example the power unit

in the robot managed system described in Section 4.1 affects the video transmission

unit. Thus the video transmission quality is governed by the available power such

that if the available power is low then the video quality could not be very high. This

affects the total utility of the robot and CRATER may not provide an adaptation

with utility greater than UT because CRATER can not increase the available power

in the robot and will only provide an adaptation response with the highest possible

utility.

6.3 Results

This sections provides extensive results from the experiment explained in Chapter 4

and implemented in Chapter 5. The following subsections contains information re-

garding the response time and the expediency of adaptation.

62

Chapter 6: Experiment and Results Results

6.3.1 Examples of adaptation

Table 6.1 illustrates two randomly selected adaptation done by CRATER one of them

contains uncertain values. The first adaptation request embraces a defect in the op-

erating mode of the robot as there is an obstacle while the robot speed is high. The

adaptation response for this disordered state of the robot is to reduce the speed. Re-

ducing the speed is the only possible adaptation response as we can not change the

obstacle to false as it is not adaptable attribute. The table also shows that the utility

of the adaptation request is zero which is a utility breaker and CRATER managed

to provide an adaptation response with utility 0.892 which is greater than zero and

represents an accepted expedient adaptation response. The other adaptation requests

holds uncertain value in the communication attribute. CRATER issued adaptation

process for this robot state because the uncertain attribute, the communication, is un-

certain and on possible values of it leads to zero utility. The value of communication

attribute that causes zero utility is off which means that the robot is unable to estab-

lish connection with the remote centre. As a result CRATER issues an adaptation

process that produces the adaptation response that assures that the communication is

set with appropriate value enabling communication with the remote centre. Needles

to say that the chosen value, UHF, should not break the utility of the robot which

is satisfied and the utility is 0.8666. Another possible adaptation response for the

second adaptation request is to enable the data back up and set off the communica-

tion. However CRATER did not chose this scenario because its utility is less than

the utility of the chosen adaptation response.

6.3.2 Response time results

In this section I will provide the obtained results related to response time of CRATER.

Figure 6.3 shows the average response time for seven successive run of CRATER start-

ing from empty knowledge base and each run has 50 adaptation requests. It is clear

that the average response time for any experiment is greater than the subsequent

experiment. This is normal because most of adaptation requests in the first exper-

iment were generated not retrieved form the knowledge base which is empty. The

later experiments’ average response time starts to decrease because the adaptation

responses begun to be retrieved form the knowledge base which consumes less time

than constructing adaptation responses. The average response time for experiment

seven is the smallest among all experiments as the knowledge base became more

63

Chapter 6: Experiment and Results Results

Table 6.1: Adaptation Samples

Attribute Ad.Req.1 Ad.Res.1 Ad.Req.2 Ad.Res.2

Communication UHF UHF ? UHF

Power Mode Saving Mode Saving Mode Medium Power Medium Power

Power Indicator High High High High

Speed High Low Low Low

Video quality Very High Very High Low Low

Data Backup Off Off Off Off

Obstacles True True False False

Encryption Puer Perm. Puer Perm. Zig-Zag Permu. Zig-Zag Permu.

Utility 0.484 0.892 ? 0.8666

Figure 6.3: Average Response Time

64

Chapter 6: Experiment and Results Results

sufficient and mature for providing adaptation response. However small numbers of

adaptation responses could be constructed if the knowledge base fails to provide the

required adaptation response.

6.3.2.1 β value effect on response time

Figure 6.4 shows the impact of the value of β on the average response time. If the

value of β is high e.g. 99% or 95% this means that small number of cases in the

knowledge base are selected in the qualified adaptation frame which leads to more

constructively generated adaptation responses unlike small values of β e.g. 85% or

80% which consider more cases from the knowledge base. This leads to more retrieved

adaptation responses from the knowledge base.

Figure 6.4: Average Response Time: Different β values

6.3.2.2 Response time under uncertainty

Figure 6.5 shows the average response time for adaptation request with uncertain

values with η equals 85% as stated in the experiment setup along with extra values

65

Chapter 6: Experiment and Results Results

of η. All of the 50 adaptation requests depicted in Figure 6.5 has uncertain values to

explain the effects of uncertainty in the performance of CRATER. All experiments in

this figure has the same value of β which is 90%.

Figure 6.5: Average Response Time Under Uncertainty

Figure 6.5 shows that there is a slight increase in the average response time and

it is more than what appears in Figure 6.3. This is normal because the adaptation

requests with uncertain values requires more processing and analysing as discussed

in Chapter 4 to find estimate µ and Θ.

6.3.2.3 η value effect on response time

Figure 6.6 shows the effect of η on the performance. If CRATER is configured with

high value of η this leads to consider more uncertain adaptation requests. The less η

is the less the average response time is.

6.3.3 Adaptation remembrance

As explained in Chapter 4 the adaptation response can be retrieved from the knowl-

edge base or constructed if the knowledge base is not mature enough to provide

the required adaptation. The remembrance measure finds the relation between the

retrieved adaptation from the knowledge base and the total number of adaptations.

66

Chapter 6: Experiment and Results Results

Figure 6.6: Average Response Time Under Uncertainty: Different η values

Figure 6.7 shows the remembrance of adaptation responses for seven successive exper-

iments starting form empty knowledge base. In experiment number one the number

of constructed adaptation responses is more than the retrieved which is logical as the

knowledge base is empty. In later experiments the number of retrieved adaptation

began to increase while the number of constructed adaptation responses began to

decrease. This provides a positive impacts on the performance of the CRATER.

β affects the number of construed adaptation responses. To that end Figure 6.8

shows how β affects the number of constructed adaptation responses for seven suc-

cessive experiments each of them has 50 adaptation response starting from empty

knowledge base. It is clear from that figure that the more β value is the more con-

structed adaptation responses are. This means that choosing the value of β affects

the performance of CRATER however it is still a design time decision.

6.3.4 Adaptation expediency

Adaptation accuracy is estimated by the adaptation expediency. Figure 6.9 shows the

minimum, the average and the maximum adaptation expediency for seven successive

experiments each of them has 50 adaptation responses starting from empty knowledge

base. It is clear that CRATER succeeded in providing an expedient adaptation each

67

Chapter 6: Experiment and Results Results

Figure 6.7: Adaptation Response Remembrance

Figure 6.8: β Effect on the Adaptation Process

68

Chapter 6: Experiment and Results Results

time with different expediency value depending on the nature of adaptation request

itself.

Figure 6.9: Adaptation Expediency

Figure 6.10 also shows the expediency of the adaptation process for adaptation

requests all of them contains uncertain values. The figure explains that CRATER is

in a position to work under uncertain situation and provide an effecient adaptation

in terms of adaptation expediency.

6.3.5 Results discussion and research evidence

The primary goal of this thesis is to construct an adaptation engine for self-adaptive

software systems which is accompanied with a research evidence. The research ev-

idence for this thesis is to provide an empirically evaluated evidence regarding the

goals of CRATER. In order to realize this evidence, a binary validation paradigm of

the experiment is used to validate CRATER’s testable goals.

As described in Section 1.1 and in the GQM sheets in Figure 6.1 and Figure 6.2, the

goals of this experiment are:

1. G1: Enhance the performance of the adaptation process by remembrance. The

success criteria used to binary-validate this goal is to test if CRATER managed

69

Chapter 6: Experiment and Results Results

Figure 6.10: Adaptation Expediency Under Uncertainty

to retain a successful adaptation for later reuse and how this reuse affects the

performance of CRATER.

2. G2: Provide an effective mechanism for handling uncertainty. The success

criteria used to binary-validate this goal is to test if CRATER managed to

provide an expedient adaptation response under predefined level of uncertainty

η.

In the following paragraphs, empirical evidences for validating the aforementioned

testable goals will be presented. These evidences are build upon the results presented

in Section 6.3.

The remembrance rate of the cases as shown in Figure 6.7 increases overtime

which enables CRATER to reuse cases stored in the knowledge base. This was clear

from that figure as the average returned cases from the knowledge base is 46.85 cases

versus construction rate of 3.15 cases out of 50 case. This result means that, in the

conducted experiment, CRATER provides 93.7% of its adaptation responses from the

knowledge base and the rest of the adaptation responses which is 6.3% were generated

constructively. This of-course affects the performance of CRATER as constructing

new adaptation responses consumes more time than retrieving it from the knowledge

base. The response time of CRATER decreases from (5.02 ms) in the first run of the

70

Chapter 6: Experiment and Results Experiment validity

experiment to (1.01 ms) in the last run of the experiment. The average response time

of CRATER for the performed seven runs of the experiment is (2.175 ms) based on

Figure 6.3.

The uncertainty handling in CRATER is tested by identifying the adaptation ex-

pediency. Based on results shown in Figure 6.10, the average adaptation expediency

of the performed runs of the experiment is 0.834 which represents an efficient adap-

tation under uncertainty knowing that the utility threshold is 0.5 and the maximum

utility of the managed system is 1.0. Under these information CRATER managed to

provide an expedient adaptation for all adaptation requests as shown in Figure 6.10.

6.3.6 Results conclusion

After the previous detailed results it is obvious that CRATER provides the adapta-

tion mechanism in accepted manner in terms of (1) Response Time (2) Adaptation

space utilization (by remembrance) and (3) Uncertainty diminution with the following

constructive aspects:

• Developers need not to explicitly provide predefined system’s ideal operation

states and configurations. Instead, modelling utility functions for system’s goal

is enough for CRATER to operate and provide the results shown in the previous

sections. CRATER is able to operate even there is no cases in the knowledge

base. However, the developer can provide a starter cases with the help of the

domain expert.

• CRATER provides an effective mechanism to overcome the problem of big op-

erating states. CRATER memorizes the previously adapted scenarios for later

using which has a positive impacts on performance.

• CRATER can operate under uncertainty that hinders the adaptation process.

This represents a strong point over traditional solutions.

In the next section I will provide some threats that could affect the results and

my conclusion.

6.4 Experiment validity

In this section I provide the threats to experiment external and internal validity.

71

Chapter 6: Experiment and Results Summary

6.4.1 Internal validity

The threats to internal validity in the experiment include:

• In reality the adaptation requests will be sent directly from the monitoring com-

ponent during the monitoring process of the managed system to the adaptation

engine. In the experiment conducted in this thesis the adaptation requests

were generated randomly to represent a diversity of adaptation requests. The

randomness of generation was guaranteed by the pure random selection of at-

tribute values in the implemented adaptation request generator component of

the prototypical implementation of CRATER.

• Another threat to internal validity could be the implementation of CBR engine.

Different CBR implementation could provide slightly different results particu-

larity in terms of response time even though the chosen CBR implementation [2]

shows acceptable performance.

6.4.2 External validity

The generalization of my results could be affected by the chosen domain such that if

CRATER is utilized in a different domain other than robotics. This could be figured

out if I utilize CRATER in a different domain however I expect no major differences

in the results.

6.5 Summary

This chapter presented details about the experiment, results and evaluation. This

chapter presented also the GQM quality metrics used to evaluate CRATER. The

experiment setup and the results of the experiment were described in details in this

chapter. A validation and empirical evidence were introduced to validate CRATER.

This chapter concluded with the experiment validity.

72

Chapter 7

Conclusions

Within this master thesis I presented CRATER, a framework for constructing an

adaptation engine for self-adaptive software systems, which has some advantages over

the existing solutions. The main contribution in this thesis was to provide an efficient

adaptation mechanism that considers the number of possible adaptations along with

uncertainty handling.

Before providing the information regarding how CRATER works I provided some ba-

sic information for the reader to understand the context of the thesis. After that I pro-

vided the related work to this thesis then started explain the idea of CRATER and how

it works. After that I conducted an experiment to evaluate and validate CRATER’s

performance investigating its outcomes. The main challenges that CRATER managed

to overcome were:

1. The mechanism of remembrance of the previous successful adaptations by stor-

ing them in the knowledge base for later reuse which reduces the time required

to provide the adaptation response. This saved CRATER from doing the same

computation if it receives the same adaptation request more than one time.

2. Handling uncertainty that appear in the adaptation process that hinders the

adaptation process and leads to unrealistic adaptations. The experiment showed

that CRATER is able to perform adaptation process under uncertainty.

3. The previously two challenges has been solved with a noticeable accepted per-

formance in term of adaptation engine response time.

This thesis was supported with an empirical evaluation evidence described in Chap-

ter 6. This empirical evaluation and evidence of CRATER bestows a trustworthy

73

Chapter 7: Conclusions CRATER merits and limitations

approach for realizing self-adaptive software systems.

7.1 CRATER merits and limitations

The idea behind CRATER is founded based on two connected realities. On one

hand the self-adaptivity property is realized in software systems by emulating the

closed autonomic control loop firstly proposed in [15]. This emulation guarantees

the automaticity of the system. On the other hand Case-Based Reasoning (CBR) life

cycle, which was explained in Section 2.3.2, fits well for this emulation. In this section

I will conclude, in the light of results in Chapter 6, with the merits and limitations

of CRATER. The merits of CRATER includes:

7.1.1 CRATER merits

• Operating space: CRATER provides an effective mechanism to overcome the

problem of big operating states. Firstly and thanks to CBR the existence of

knowledge base represents a basic advantage for saving the best operating states

of the managed system. These saved states, as cases in the knowledge base, can

be exploited and reused during system runtime. These cases saves the time

used to generate the adaptation response each time by learning new cases.

Moreover integrating the utility functions provides an advantageous solution

for representing the system goals and due to them the generating process of

adaptation request becomes more directed and faster to keep the knowledge

base preserving only the cases with utility greater than UT. Hence ensuring

that the retrieval process returns only efficient cases from the knowledge base.

• Managed system changes: As being an external adaptation engine, CRATER

is helpful in case of having legacy system that needed to become self-adaptive.

This is because the changes required to be performed in integrating CRATER

with legacy system is relatively small and is limited to providing some interfaces

for both monitoring and executing components.

• Adaptation response source: CRATER provides dynamic adaptation responses

because of the adaptation process discussed in Section 4.4.3 and shown in Fig-

ure 4.2 provides a learning mechanism. This contributes not only in generating

74

Chapter 7: Conclusions CRATER merits and limitations

new solutions if the existing ones are not sufficient but also saving them for

later reuse.

• Adaptation process initiation: Even though CRATER adopts the reactive adap-

tation style, it can be extended easily to support proactive adaptation. The

Observer and Decide component in Figure 4.2 can be elaborated to provide a

proactive mechanism. CRATER’s components function separately exactly like

what adaptation process suggests. Each component has its own functionality

which enables future extension.

• Autonomy vs Human intervention: CRATER manages to start from empty

knowledge base and operates without human inference which is an advantage.

However this do not hinders the domain expert to define and refine the knowl-

edge base contents. The Human-In-The-Loop principle can easily be applied

in CRATER as a result of having the persisted knowledge base that can be

changed at any time.

• Uncertainty handling: CRATER handles uncertainty which is one of the most

decisive challenges in the self-adaptive software system field. The similarity

measures that are the basic of CBR plays an important role in diminution of

uncertainty and reduce its effects on the adaptation process particularity for

unknown and missing values.

7.1.2 CRATER limitations

CRATER could suffer if the target managed system’s adaptation related attributes do

not have a predicted possible values. CRATER’s mechanism is built upon a defined

set of attributes values. Also the prototypical implementation may be improved to

provide better performance particularly if the CBR implementation [2] is substituted

with another one with different representation of the knowledge base to enable some

methods of cashing instead of reading the whole knowledge base every time. The

experiment used to validate CRATER used 8 attributes for the robot system. A

problem could be raised if the managed system has more attributes with more possible

values. This could affect the performance of CRATER. In this case an offline indexing

for the knowledge base can be performed to enhance the performance of the retrieval

process.

75

Chapter 7: Conclusions Prospective and vision

7.2 Prospective and vision

Applying CRATER on different case studies will provide an good indication regarding

the applicability of it. It would be good if CRATER is applied in different domain

e.g. information system domain applications, in order to deeply investigate its appli-

cability. The next step is to prepare two publications the first will be about CRATER

and the second about how the utility functions are utilized in case-based reasoning

and applied in the CBR life cycle. Then finding a corresponding software engineering

conference and case-based reasoning conference to submit them.

76

Bibliography

[1] An architectural blueprint for autonomic computing.

http://www-03.ibm.com/autonomic/pdfs/ACBlueprintWhitePaperV7.pdf/.

[2] Freecbr engine. http://freecbr.sourceforge.net/.

[3] Java development kit. www.oracle.com/technetwork/java/javase/.

[4] Netbeans ide. http://netbeans.org/.

[5] A. Aamodt and E. Plaza. Case-based reasoning; foundational issues, methodolog-

ical variations, and system approaches. AI COMMUNICATIONS, 7(1):39–59,

1994.

[6] D. W. Aha. Case-based learning algorithms, 1991.

[7] S. Aksoy and R. M. Haralick. Probabilistic vs. geometric similarity measures for

image retrieval. In IEEE Conf. Computer Vision and Pattern Recognition, 2000.

[8] R. Asadollahi, M. Salehie, and L. Tahvildari. Starmx: A framework for develop-

ing self-managing java-based systems. pages 58 –67, 2009.

[9] G. Bertolotti, A. Cristiani, R. Lombardi, M. Ribaric and, N. Tomas andevic

and, and M. Stanojevic and. Self-adaptive prototype for seat adaption. In Self-

Adaptive and Self-Organizing Systems Workshop (SASOW), 2010 Fourth IEEE

International Conference on, pages 136 –141, 2010.

[10] B. Bontchev, D. Vassileva, B. Chavkova, and V. Mitev. Architectural design

of a software engine for adaptation control in the adopta e-learning platform.

In Proceedings of the International Conference on Computer Systems and Tech-

nologies and Workshop for PhD Students in Computing, CompSysTech ’09, pages

24:1–24:6. ACM, 2009.

77

http://www-03.ibm.com/autonomic/pdfs/AC Blueprint White Paper V7.pdf/
http://freecbr.sourceforge.net/
www.oracle.com/technetwork/java/javase/
http://netbeans.org/

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[11] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola. Qos-

driven runtime adaptation of service oriented architectures. In Proceedings of

the the 7th joint meeting of the European software engineering conference and

the ACM SIGSOFT symposium on The foundations of software engineering,

ESEC/FSE ’09, pages 131–140. ACM, 2009.

[12] S.-W. Cheng and D. Garlan. Handling uncertainty in autonomic systems, 2007.

[13] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-based self-adaptation

in the presence of multiple objectives. In Proceedings of the 2006 international

workshop on Self-adaptation and self-managing systems, SEAMS ’06, pages 2–8.

ACM, 2006.

[14] M. Derakhshanmanesh, M. Amoui, G. O’Grady, J. Ebert, and L. Tahvildari.

Graf: graph-based runtime adaptation framework. In Proceedings of the 6th In-

ternational Symposium on Software Engineering for Adaptive and Self-Managing

Systems, SEAMS ’11, pages 128–137, 2011.

[15] S. Dobson, S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci, P. Nixon,

F. Saffre, N. Schmidt, and F. Zambonelli. A survey of autonomic communica-

tions. 2006.

[16] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: a framework for engineering

self-tuning self-adaptive software systems. In Proceedings of the eighteenth ACM

SIGSOFT international symposium on Foundations of software engineering, FSE

’10, pages 7–16, 2010.

[17] N. Esfahani, E. Kouroshfar, and S. Malek. Taming uncertainty in self-adaptive

software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, ESEC/FSE ’11,

pages 234–244, 2011.

[18] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:

architecture-based self-adaptation with reusable infrastructure. pages 46 – 54,

2004.

[19] P. Guo, Q. Bao, and Q. Yin. Probabilistic similarity measures analysis for remote

sensing image retrieval. Machine Learning and Cybernetics, 2006 International

Conference, 2006.

78

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[20] M.-H. Karray, C. Ghedira, and Z. Maamar. Towards a self-healing approach to

sustain web services reliability. In AINA Workshops’11, pages 267–272, 2011.

[21] N. Khakpour, R. Khosravi, M. Sirjani, and S. Jalili. Formal analysis of policy-

based self-adaptive systems. In Proceedings of the 2010 ACM Symposium on

Applied Computing, SAC ’10, pages 2536–2543. ACM, 2010.

[22] D. Kim and S. Park. Reinforcement learning-based dynamic adaptation planning

method for architecture-based self-managed software. In Software Engineering

for Adaptive and Self-Managing Systems, 2009. SEAMS ’09. ICSE Workshop

on, pages 76 –85, 2009.

[23] H. Liu, M. Parashar, and S. Member. Accord: A programming framework for

autonomic applications. IEEE Transactions on Systems, Man and Cybernetics,

Special Issue on Engineering Autonomic Systems, Editors: R. Sterritt and T.

Bapty, IEEE Press, 36:341–352, 2006.

[24] D. McSherry. Diversity-conscious retrieval. In Proceedings of the 6th European

Conference on Advances in Case-Based Reasoning, ECCBR ’02, pages 219–233.

Springer-Verlag, 2002.

[25] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex, and J. a. P. Sousa. A

framework for utility-based service oriented design in sassy. In Proceedings of the

first joint WOSP/SIPEW international conference on Performance engineering,

WOSP/SIPEW ’10, pages 27–36. ACM, 2010.

[26] A. Metzger. Towards accurate failure prediction for the proactive adaptation of

service-oriented systems. In Proceedings of the 8th workshop on Assurances for

self-adaptive systems, ASAS ’11, pages 18–23. ACM, 2011.

[27] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg. Models@

run.time to support dynamic adaptation. Computer, pages 44 –51, 2009.

[28] N. C. Narendra and U. Bellur. A middleware for adaptive service orientation

in pervasive computing environments. In Proceedings of the 5th International

Workshop on Middleware for Service Oriented Computing, MW4SOC ’10, pages

19–26, 2010.

[29] V. Pareto. Cours d’economie politique. F. Rouge, Lausanne, 1896.

79

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[30] E. Plaza and J. L. Arcos. Constructive adaptation. In Proceedings of the 6th

European Conference on Advances in Case-Based Reasoning, ECCBR ’02, pages

306–320, 2002.

[31] M. Richter and A. AAmodt. Case-based reasoning foundations:the knowledge

engineering review. The Knowledge Engineering Review, Vol. 20:3, 203207, 2006.

[32] M. M. Richter and S. Wess. Similarity, uncertainty and case-based reasoning in

patdex.

[33] M. Salehie and L. Tahvildari. A quality-driven approach to enable decision-

making in self-adaptive software. In Software Engineering - Companion, 2007.

ICSE 2007 Companion. 29th International Conference on, pages 103 –104, may

2007.

[34] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape and research

challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS),

2009.

[35] M. A. S. Sallem and F. J. da Silva e Silva. Adapta: a framework for dynamic

reconfiguration of distributed applications. In Proceedings of the 5th workshop

on Adaptive and reflective middleware (ARM ’06), ARM ’06, 2006.

[36] J. W. Schaaf. Fish and shrink. a next step towards efficient case retrieval in large

scaled case bases, 1996.

[37] A. Stahl. Learning similarity measures: A formal view based on a generalized

cbr model. pages 507–521. Springer, 2005.

[38] A. Sthal. Learning of Knowledge-Intensive Similarity Measures in Case-Based

Reasoning. PhD thesis, 2003.

[39] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal question

metric (gqm) approach. In Encyclopedia of Software Engineering. John Wiley

and Sons, Inc., 2002.

[40] T. Vogel and H. Giese. Adaptation and abstract runtime models. In Proceedings

of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-

Managing Systems, SEAMS ’10, pages 39–48, New York, NY, USA, 2010.

80

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[41] W. Walker, P. Harremoes, J. Rotmans, J. Van der Sluijs, M. Van Asselt,

P. Janssen, and M. Krayer Von Krauss. Defining uncertainty: a conceptual

basis for uncertainty management in model-based decision support. Integrated

Assessment, 2003.

[42] S. Wess, K. dieter Althoff, and G. Derwand. Using k-d trees to improve the

retrieval step in case-based reasoning. pages 167–181. Springer-Verlag, 1993.

[43] W. Wilke and R. Bergmann. Techniques and knowledge used for adaptation

during case-based problem solving, 1998.

[44] Y. Wu, Y. Wu, X. Peng, and W. Zhao. Implementing self-adaptive software

architecture by reflective component model and dynamic aop: A case study. In

QSIC’10, pages 288–293, 2010.

[45] Q. Yang, J. Lü, J. Li, X. Ma, W. Song, and Y. Zou. Toward a fuzzy control-based

approach to design of self-adaptive software. In Proceedings of the Second Asia-

Pacific Symposium on Internetware, Internetware ’10, pages 15:1–15:4, 2010.

[46] H. Ziv, D. J. Richardson, and R. Klsch. The uncertainty principle in software

engineering, 1996.

81

	Abstract
	Acknowledgements
	Declaration
	List of Tables
	List of Figures
	Algorithms
	Introduction
	Goals and contributions of this thesis
	Research method
	Terms definition
	Thesis outline

	Preliminaries
	Self-adaptive software systems
	Adaptation classifications

	Uncertainty
	Uncertainty in software engineering
	Uncertainty in self-adaptive software systems

	Case-based Reasoning
	CBR overview
	CBR life cycle (RE)4
	Similarity measures
	Case retrieval
	Case adaptation
	Learning in CBR

	Summary

	State of The Art
	Related work selection criteria
	Related work
	Learning based adaptation
	Architecture and model based adaptation
	Middleware based adaptation
	Fuzzy control based adaptation
	Programming framework based adaptation

	Discussion
	Problem statement
	Summary

	Proposed Solution
	Motivating example
	Robot system
	Robot goals
	Quality-related requirements
	Functioning requirements

	CBR knowledge base
	Managed system attributes
	Attribute types
	Attribute weight

	CBR as adaptation engine
	Adaptation request
	Adaptation response
	Adaptation process
	Analysing adaptation request
	Case retrieval
	Constructing QAF
	Generate adaptation response
	Retain

	Utility function
	Utility function importance
	Utility function definition
	Utility function weight
	Overall utility function
	Utility function examples

	Uncertainty diminution in CRATER
	Uncertainty handling
	CRATER's uncertainty location
	CRATER's uncertainty level
	Adaptation request uncertainty
	Uncertainty in qualified adaptation frame

	Summary

	Implementation
	CRATER architecture
	Knowledge base modelling
	CBR engine
	Adapt/Reuse component
	Retain component

	Adaptation request
	Monitoring
	Main classes
	Development tools
	Uncertainty
	Summary

	Experiment and Results
	Experiment setup
	Design decisions
	Experiment nature

	GQM-based metrics
	Adaptation engine performance
	Adaptation remembrance
	Adaptation response time

	Adaptation expediency

	Results
	Examples of adaptation
	Response time results
	 value effect on response time
	Response time under uncertainty
	 value effect on response time

	Adaptation remembrance
	Adaptation expediency
	Results discussion and research evidence
	Results conclusion

	Experiment validity
	Internal validity
	External validity

	Summary

	Conclusions
	CRATER merits and limitations
	CRATER merits
	CRATER limitations

	Prospective and vision

	Bibliography

