CRATER: Case-based Reasoning Framework for
Constructing An Adaptation Engine in
Self-Adaptive Software Systems

by
Mohammed A. Abufouda

A thesis submitted to the
Department of Computer Science
in partial ful Iment of the requirements for the degree of
Master's of Computer Science

Department of Computer Science
Technical University of Kaiserslautern

October 2012

Abstract

Self-adaptivity in software systems is a property that alis software systems to au-
tonomously adjust their behaviour during run-time to keepagsfying system's goal.
This adjustment is performed with minimal or without humanritervention. The mo-
tivation behind developing self-adaptive software systens to enable the managed
system to run independently which reduces the cost of comiles caused by manual
handling of maintenance. E cient self-adaptive software ystem should handle all
possible operating scenarios that violate system's goaledaeact to these violations
properly. This requires Adaptation Engine that receives agbtation request during the
monitoring process of the managed system and responds with appropriate adapta-
tion response. In this thesis CRATER is presented which is aafmework for building
an external adaptation engine for self-adaptive softwargstems that is built on Case-
Based Reasoning (CBR). CBR is an arti cial intelligence brach constructed mainly
on the idea of "similar problems have similar solutions". CRTER handles two of
the challenging problems in self-adaptive software syste(h) Handling uncertainty
that hinders the adaptation process and (2) Managing the gatation space complexity
e ciently. CRATER provides an e ective mechanism for producing applicable adap-
tation response with e ective handling for both aforemerdned challenges. This thesis
presents an experiment illustrating how CRATER is utilizedhlong with results and
evaluation that show a signi cant potential for responsertie, adaptation expediency
and adaptation under uncertainty.

Acknowledgements

| would like to express my sincere gratitude all those who supportede during my
master study and master thesis. Especially Jun. Prof. Lars Gruks who patiently
spares no e orts in helping me with continuous support, advices aridvaluable feed-
backs during my last year. Warm thanks are dedicated to my fatheand mother
who supported me during the whole period of my studies. A special wa thank is
devoted for my wife Hadeel who faithfully heartens me during my stly.

Declaration

| hereby declare that this master thesis contains no materiazhich has been ac-
cepted for the award of any other degree or diploma in any uargity or equivalent
institution except where due reference is made. To the bes$troy knowledge and be-
lief, this master thesis contains no material previously flished or written by another
person, except where due reference is made in the text of thaster thesis.

Kaiserslautern, September 29, 2012

Mohammed Abufouda

Contents

4.1 Mgggggggﬁﬁm 27
4.1.1 Robot syste

4435 Retail s 40

Vi

45 Utility function]o 42

" . 42
|4.5.2 Utility function de nition |

MMMﬁ ------------ 48

L . e e e e
6.2.1.1 Adaptation remembrﬂe 60

%wﬂe 61
' enay 61

vii

|7_C_Qndu5ans_ 73
7.1 CRATER merits and limitationso oovvrt .. 74
711 CRATER merits i i i e 74
702 CRATER liMtations o oo oooe e 75
72 Prospective and visidn 76
|Bib|ng[aph¥ | 77

viii

List of Tables

b_l_Summanmj_Bﬂa.LedANoﬂk 25
4.1 Rohot attribute data sheet 29
4.2 Robot quality requirements 30
Ms 31

4.4 _Robot functioning requirements 31
45 Managed System Attribute Types oo 33
|5,.’I_Ada.p1a1LQn_Sa.mple|s 64

List of Figures

List of Algorithms

1 CRATER adaptaion processo..o oo,

2 First Fit Heuristic Constructive Adaotation|

Xi

Chapter 1

Introduction

Needless to say that software plays a vital role in the modern daily @aty which
creates more challenges that are needed to be solved. Softwargireering aims to
provide software of quality. One of the challenges is to constructsoftware with the
ability of autonomous behaving during its run-time. Henceelf-adaptivity in software
systems is the ability of a software system to adjust its behavior dng run-time to
preserve system's goals. This property dictates the presenceanfaptation mecha-
nism in order to do the logic of self-adaptivity. Many solutions, includig techniques,
approaches and frameworks, exist in literature and practice to abze self-adaptivity.
Self-adaptivity is required to handle software system's complexitynal costs [34] and
enable these systems to run autonomously. This requires reducithg human inter-
ference as much as possible which represents a challenge in theldpweent process of
self-adaptive systems particularity when the operating states drcon gurations of the
managed system are relatively big. Many challenges exist in the arefaself-adaptive
software system and many contributions exist in the literature to &ndle these chal-
lenges. However these contributions lack the exible and dynamic agtation from
three perspectives:

Adaptation responsible unit: There is no clear separation between the man-
aged system, the system intended to behave adaptively, and theagptation
engine. This increases the complexity and maintenance of the deyeteent of
self-adaptive software system and limits the transferability of thevork done for
one application to another applications and domains.

Uncertainty handling: Uncertainty is a challenge that exists not only in self-
adaptive software system but also in the entire software engingsy areas.

1

Chapter 1: Introduction Goals and contributions of this thesis

Therefore handling uncertainty is considered crucial issue in constting self-
adaptive software system as uncertainty hinders the adaptatioprocess if it is
not handled and diminished.

Adaptation space:The corner stone of self-adaptive software system is to provide
an adaptation to be applied on the managed system during run time. hE
adaptation process raises a performance challenge if the adapiat space is
relatively big particularly in the software systems where new adapti@ans are
required to be inferred. This challenge requires an e cient mechamsin dealing
with this adaptation space that guarantees learning new adaptatioalong with
providing e cient adaptation at satisfactory performance.

1.1 Goals and contributions of this thesis

This thesis is intended to develop and validate CRATER, a frameworlof an external
adaptation engine for self-adaptive software system, which sadvthe aforementioned
problems together. Concisely, in addition to provide the functionalt of self-adaptive
software systems, CRATER is used to (1) handle uncertainty thaappears in the
adaptation process which hinders the e ciency of the adaptation qcess, (2) en-
hance the performance of adaptation process particularly perfoance problems due
to the big number of operation states and con gurations and (3) novide reasonable
response time of the adaptation engine which a ects the whole adagion process
positively. Figure[I1.1 shows an abstracted view of CRATER. The magad system is

Adaptation Engine

Adaptation
request

Adaptation
response

Monitor Excecutor

Provide
system
attributes

Managed System I

Figure 1.1: Self-adaptive Software System with External Adaptain Engine

Apply
adaptation

Chapter 1: Introduction Research method

a system that intended to upgrade to a self-adaptive software stgm and is separated
from the external adaptation engine. CRATER requires monitoringhe managed sys-
tem behaviour so that it can detect any deviation from system's gém In case that

the monitor detects a violation in the managed system's goals, an gutation request

is issued and passed to the adaptation engine which is modelled in thise#is as
Case-based Reasoning (CBR) engine. The adaptation engine reggmoto this adap-

tation request with appropriate adaptation response that res@s the system from its
violating state to another state that keeps satisfying system's gb Executor task's

is to apply the adaptation response on the managed system.

1.2 Research method

This thesis aims to provide a trustworthy empirically validated exteral adaptation
engine that can be utilized in the realization of self-adaptive softwarsystem. The
outcome of this research should overcome the problems in the exigtsolutions in
realizing self-adaptivity in software systems. In order to accomphsthis mission, the
research in this thesis follows the following research method steps:

1. Problem statement:The rst step in this research is to identify the problem this
thesis is solving. This task is carried out by literature review of the ésting
solution and inspecting their limitation. The outcome of this step is a chr and
speci ¢ problem statement.

2. Solution idea: During this step a solution idea is synthesized in order to con-
struct an external adaptation engine that overcome the problesnde ned in the
problem statement. This step involves an implementation of the solan idea
i.e. the proposed external adaptation engine in order to test andakdate it.

3. Experimental evaluation: This step aims to validate the external adaptation
engine resulted from the solution idea step of the research methodhe vali-
dation of the proposed solution is performed through an empiricav&uation
style. The empirical evaluation is conducted as experiment with bingrval-
idation paradigm on a motivating example illustrating the usefulness ahis
solution. The results of this steps provide the software engineegirempirical
evidence for the validation of this research.

Chapter 1: Introduction Terms de nition

1.3 Terms de nition

In this section | will list the terms used in the following chapters with tleir de nitions
within the scope of this thesis:

Adaptation Engine: Based on the work in [[34], the adaptation engine is the
component or the set of components that are responsible for piding self-
adaptivity mechanism. Generally, an adaptation engine is an implemeation
of a closed control loop [[15].

Adaptation Request: Is an object that contains managed system's attributes
values at the time when the managed system violates a certain prackd re-
quirement.

Adaptation Response:Adaptation response is the result of the adaptation pro-
cess performed by the adaptation engine. Adaptation responsears object that
contains the corrective state that has to be applied on the managesystem.

Uncertainty: Any object that has unknown values or unde ned values is an
object with uncertainty. An example of uncertainty is an adaptation request
that has one or more attributes with unknown or unde ned values.

Adaptation Space:ls the set of all possible states that the managed system can
run in.

System Goal:ls a functional or non functional goal of the managed system.

Adaptable Attributes: Are the managed system's attributes whose values can
be changed during the adaptation process.

Quali ed Adaptation Frame: Is the set of retrieved cases from the knowledge
base after the retrieving process.

Uncertain Value: Any value that are not in the set of de ned values for some
attribute.

Utility-guided Constructive Adaptation: It is the process of constructing new
adaptations if the quali ed adaptation frame is empty. The utility function is
the decisive criteria in this process.

Chapter 1: Introduction Thesis outline

Managed System Uncertainty (Uncertain State):Is a state of the managed
system where one or more of its attributes has/have unknown vads.

Utility Threshold (UT): Is the utility value at which the managed system re-
quires adaptation i.e. the utility of the managed system should not eeh the
value of utility threshold otherwise adaptation is issued.

1.4 Thesis outline

The rest of this thesis is organized as follow: Chaptéi 2 provides thelative infor-
mation for the reader to gain general understanding of the conteof this thesis. It
also contains the used technology for the proposed solution. Thisapter includes in-
formation about: (1) self-adaptive software systems, (2) undainty in self-adaptive
software systems and (3) case-based reasoning. In Chapien 3vill shed light on
some related work and how researchers solve self-adaptivity chafjes accompany
with extensive evaluation for their work and relate it to CRATER. This chapter also
de ne the problem statement of this thesis. Chaptefl4 contains ti&ls about the
proposed solution. It also contains a motivating example used for @anation and
for the experiment. Chapter[d is dedicated for the implementationfocCRATER.
Chapter[@ describes the experiment settings used to evaluate CRZR. It also con-
tains evidences regarding this research by elaborating softwareasures and metrics
for empirical evaluation purpose. Chapterl7 provides a conclusiofi thhe thesis and
discusses the merits of CRATER and prospective.

Chapter 2

Preliminaries

In this chapter | will pave the way for the reader to gain enough infonation about the
topic of the thesis by providing preliminary concepts used througlub this thesis. In
Section[Z.1 | will start with self-adaptive software systems then pwide information
about uncertainty in self-adaptive software systems in Sectidn 2.2n Section[Z.3 |
will end this chapter by providing basics of Case-Based ReasoningBR).

2.1 Self-adaptive software systems

Software quality is considered the basic motivation in software engiaring eld. In
order to provide a software system with an accepted quality, songgiality attributes
should be preserved. Software adaptability is a quality attribute tht contributes
in reducing the cost of handling the complexities of software systenj34] and re-
duces the required amount of maintenance which reduces the humivolvement.
Most of the work in the area of self-adaptive software engineeriragrees that self-
adaptive software systems argystems that can change its behaviour during runtime
while preserving software system's goalsSo as to develop a self-adaptive system,
many questions should be answered for example, "When", "How" di'What" to be
adapt [34]. Answering these questions is the main challenge during ttievelopment
of a self-adaptive software system and characterizes the beiwav of the system and
the interaction among its components.

Generally, adaptation mechanism goes through four processes| [84 shown in Fig-
urel2.1:

I. Monitoring : In this process, a monitoring process is kept in order to perform a

6

Chapter 2: Preliminaries Self-adaptive software systems

Requests

Detecting Deciding
Decisions
Symptoms
Process

Data Flow Q Monitoring Acting
Interface ()
Events Actions
(Sensors) (Effectors)

Figure 2.1: Self-adaptation Process [34]

continuous reading for system's characteristics. Generally, treesharacteristics
are the attributes and parameters of the system that the adaption process is
build based on their values that at some point of operating necesdita adap-
tation.

ii. Detecting: Detecting process investigates and evaluates system charaistecs
in order to decide whether adaptation is need or not.

iii. Deciding: If adaptation is required, this process characterizes the adagtion
nature. This includes answers to questions like (1) what system'sastacteristics
should be changed? (2) what the nature of this change is ?

iv Acting: After the deciding process, an action should take place to apply ¢h
adaptation. This includes changing of the runtime behaviour of the anaged
system by applying the proposed adaptation.

2.1.1 Adaptation classi cations

Self-adaptive software systems can be classi ed based on manyspectives. In the
following paragraphs | will provide some of these categorizations.

1. Adaptation responsible:In self-adaptive software systems there are two types of
adaptation based on which component or software is responsible éwing the
adaptation:

i. External Adaptation: In this approach similar to Figure[1.1, the adap-
tation engine is separated from the adaptable software systematé The

Chapter 2: Preliminaries Self-adaptive software systems

adaptation engine provides the adaptation response once reqdirand ap-
plies it on the managed system. This separation between the mandge
system and the adaptation engine enhances the scalability and maimt-
ability of the entire system. Also, the external adaptation engine an
serve multiple self-adaptive components and legacy systems thated to
be adaptable.

Internal Adaptation : In this approach, the adaptation logic is embedded
in the software system itself. This approach hinders the scalabilityna
increases the system's complexity.

2. Adaptation response nature:Adaptation response has two style in terms of the
way they are generated:

Static Adaptation: In this type, adaptation responses are static and the
logic of adaptation is restricted to choose one of these decisiong. isl
obvious that this type hampers the existence of new adaptationspwever,
it guarantees the suitability and correctness of adaptation decisis. The
work in [9] is an example of static adaptation.

Dynamic Adaptation: In this type, new adaptations can be evolved during
run-time. Unquestionably these adaptations should guarantee ¢hsatis-
faction of system's requirements which is an elementary challenge elfs
adaptive software systems. In this type of adaptation, a learningrocess is
required to learn and provide new adaptation responses as e ciergaction
for new situations the managed system may run through.

3. Adaptation process initiation: This categorization is based on the moment at
which the system issues an adaptation request during the runtimd the self-
adaptive software system. The categorization includes:

Reactive Adaptation: When the system reaches an unwanted state, then
the adaptation request is issued.

ii. Proactive Adaptation: The adaptation request is issued before the system

reaches unwanted state. This requires a component for early detion for
states that violate system's goals.

i. Preventive Adaptation: In this case the fault is repaired before a conse-

guence appears to the user [26].

8

Chapter 2: Preliminaries Uncertainty

In all cases monitoring system's states is required however in theopictive
adaptation, more e ort should be harnessed for handling the préztion and
detection of unwanted state before reaching them. It is obviousat proactive
adaptation can solve many drawbacks of the reactive adaptatiors & precludes
the system from operating in unwanted states.

2.2 Uncertainty

In this section | will provide some information about uncertainty. InSubsection 2,211 |
will discuss some information about uncertainty in the domain of safiare engineering
then in Subsection”Z.ZJ2 | will present the related de nitions of unc&inty in self-
adaptive software systems.

2.2.1 Uncertainty in software engineering

Many challenges exist in the software engineering eld, one of them dealing with
Uncertainty. Diminution of uncertainty becomes more and more essential; becau
a system running under uncertainty could raise the percentage ohdesired results.
Uncertainty may exist in all phases of software engineering life cycl&€his means that
uncertainty may appear in requirements engineering, system designd even in coding
and software testing[[46]. | will shed light on the general de nitionsrad classi cations
of uncertainty in software engineering then | will talk about uncerinty in the self-
adaptive software systems and the scope of uncertainty that witle covered in this
paper. Many de nitions for uncertainty exists in literature, one geeral de nition is
"Any departure from the unachievable ideal of complete deténism'' [41]. Another
de nition is " Uncertainty Principle in Software Engineering (UPSE), whth states
that uncertainty is inherent and inevitable in software delopment processes and
products” [46]. Based on these de nitions | can say that the de nition of unceainty
is context-speci ¢ which means that uncertainty in requirements igli erent from
the uncertainty in system models even though the requirements @rsystem models
are related. Hence, dealing with uncertainty is di erent among sysin development
phases. Also it is clear that if uncertainty exists in one developmenthpse, the
subsequent phases will inherit this property unless it is determinisadly resolved.

Chapter 2: Preliminaries Uncertainty

2.2.2 Uncertainty in self-adaptive software systems

In self-adaptive software systems, uncertainty is a crucial chatige. This is because
the behaviour of the system during run-time will be determined by th system itself.

So, the system should behave correctly and should not dissent fio@ctional and non-

functional requirements after the adaptation has been performa. In self-adaptive

software systems, the possibility of uncertainties may increase e adaptation en-

gine decisions will face some uncertainties in both reading the systsrparameters

and in judging the right adaptation decision.

Based onl]41] uncertainty has three dimensions:

1. The Location of uncertainty: Where the uncertainty manifests in the system.

2. The Level of uncertainty: A variation between deterministic level and total
ignorance. This means that uncertainty about one attribute of te system can
take a value between one and zero [32].

3. The Nature of uncertainty: Whether the cause of uncertainty is variability or
lack of knowledge in the uncertainty meant attribute of the system

Uncertainty in self-adaptive software systems falls into two categies [17]:

i. Internal Uncertainty : This type of uncertainty is a consequence of internal
models of the system and adaptation engine. This means that untanty
is resulted from the system itself including the managed system arai/ the
adaptation engine.

ii. External Uncertainty : This type of uncertainty is a consequence of the environ-
ment that encompasses the self-adaptive software system.

| see both of external and internal uncertainty related to eachtber as the external
uncertainty contributes in raising the level of internal uncertainy. This is because
when the system reads some parameters from the external eowiment that holds
uncertain readings, this uncertainty will be transferred to the inérnal model, e.g. the
adaptation engine hence the internal uncertainty will grow. For exmple, if a robot
system has some sensors for detecting obstacles in the surrongdarea then this
attribute, obstacle existence, represents an external sourgkuncertainty because the
robot may fail to provide accurate readings to indicate i€ertainly there is an obstacle
or not in the environment. This external uncertainty is re ected o the robot and
contributes in an internal uncertainty.

10

Chapter 2: Preliminaries Case-based Reasoning

2.3 Case-based Reasoning

In this section | will talk about case-based reasoning (CBR) and pvae enough
details for the reader about it. Sectiori_2.3]1 provides a quick overweabout CBR.
Section[2.3.2 gives detailed information about CBR life cycle.

2.3.1 CBR overview

Case-Based Reasoning (CBR) is a branch of arti cial intelligence. GBcan be seen as
a machine learning approach [38, 37] that is build on the idea of humamyvof solving
problems i.e. as similar problems have similar solutions| [5]. CBR is estabéshon
strong mathematical foundations([31] like similarity measures which the backbone
of CBR. Any CBR system has a knowledge base that contains casepnresenting the
knowledge of the modelled system. Each case is a pair of a problem arsslution. For
any new problem, CBR systems retrieve the relevant cases frometknowledge base
which contains cases, then reuse and adapt them for application thre new problem.
If the adaptation and reuse phase produces new cases then tlaeg retained in the
knowledge base for later reuse. This process represents thereay mechanism, as
learning is performed in CBR via retaining new cases. In the followingcd®n we
will elucidate CBR working mechanism and its fundamentals.

2.3.2 CBR life cycle (RE)*

Figure[2.2 shows the cycle of CBR system. If we have a new problemhés to be
represented as a case, then the generating of the solution hasrfsteps [5] as | will
explain in the following:

I. Retrieve: The CBR system retrieves the most similar case or cases from the
knowledge base by applying the similarity measures. It is a design deamsto
retrieve only the most similar case or a set of similar cases.

ii. Reuse: In this stage, the system makes use of the information of the retved
cases. The retrieved case in ideal situation represents a solutionthe problem
without any modi cation of its information. If not, CBR adapts this in formation
to the query problem and then formulates a new solution.

iii. Revise: A revision of the new solution is important to make sure that it satises
the requirement of the system. Revising process can be done bylgmg it to

11

Chapter 2: Preliminaries Case-based Reasoning

Problem

General
Knowledge

Confirmed Suggested
Solution Solution

Figure 2.2: Case-based Reasoning Life Cydlé [5]

12

Chapter 2: Preliminaries Case-based Reasoning

real world [5] or evaluating it by domain expert. Also revising can be de by
simulation approaches[[38].

iv. Retain: In this stage if the new generated case represents a valuable ioya-
ment to the knowledge base, then it is saved in the knowledge base mder to
use it latter.

Case can be represented in many ways such that: (1) attributexvue based repre
sentation (2) object oriented representation and (3) other spec representation like
XML format. The rst type is widely used because it is easy to represt the problem
beside the e ciency of similarity measures used for this type. The &ibutes can be
numeric, symbolic, data time... etc. In this thesis | will utilize the attribute-value
based representation as | will explain in details in Chapter 4.

2.3.3 Similarity measures

In order to perform the retrieving process, e cient mathematicé similarity measures
are essential. The similarity measures are applied to the attributed the case. The
appropriateness and e ectiveness of similarity measures plays anpartant role in
the e ciency of the CBR system since e cient similarity measures will lead to a
better case retrieval. This is because case retrieval is the basis fleuse and retain
steps later on. Similarity measures can also be used to estimate tharnsferability
of retained cases into new solution in the adaptation phase. Formallg similarity
measure is a functionsim: (Q,D) ! [0, 1] [37]. A value of one represent heights
similarity, an exact match, and a value of zero represent the highedissimilarity. To
implement this, many traditional similarity measures exist. In{[38], may similarity
measures for improved case retrieval have been introduced.

Hamming Distancefor example, is one of these measures for binary attributes so
for any two casesx and y with n attribute vectors, the distance between these two
cases can be calculated by:

H(x;y)=n Xi Vil (HammingDistance) (2.2)
i=1

Another similarity measure isSimple Matching Coe cient SMC:

H(x;y)
n

simy (xy) =1 jffijxi =vyigi (SMC) (2.2)

13

Chapter 2: Preliminaries Case-based Reasoning

For numeric attributes, Euclidean distancecan be used:

distgycig (X;y) = (Xi Vi)?2 (EuclideanDistance) (2.3)
Also many similarity measures likeCity Block Metric and Euclidean Distancecan be
used to calculate similarity measures e ciently. Attributes can also le weighted for
improving the results of similarity measures; Weighted Minkowski Non [38] is one
of these measures. Another way for implementing similarity measwsres Probabilistic
Similarity Measures (PSM) [7,[19]. These similarity measures play a vitable in
the proposed idea in this thesis; this will be discussed later in Chaptdrwhere the
uncertainty will be represented in terms of similarity between sysig's attributes. In
order to calculate the similarity between two cases, we need to nché similarity
between the corresponding attributes. This similarity is calculated yoone of the
similarity measures aforementioned. One important aspect in rementing the case
attributes is the weights of these attributes. Attributes can be wighted according to
their importance. Similarity can be seen a&ocal Similarity and Global Similarity.
The local similarity is the similarity between attributes while the global snilarity is
the similarity on the case level itself where attributes weights are neidered.

2.3.4 Case retrieval

Retrieval process is based on similarity measures. The retrievalogess may be (1)
with most similar case (2) thek most similar cases or (3) all cases with minimal
similarity simy,i, . Many approaches exist for realizing retrieval process in CBR
systems:

I. Sequential Retrievalis one way to do retrieval where the CBR system calcu-
lates the similarity for all cases rst, and then the retrieval proces takes place.
Obviously, this approach has a drawback when the number of thesss in the
knowledge base is relatively large.

ii. 2-step retrieval suggests making the similarity calculations on a candidate sub-
set of cases. Determining this subset is a challenge in this type.

iii. Index-based retrieval requires o -line generating of indices for all cases before
performing similarity measures.KD-Trees [42] and Fish and Shrink [36] algo-
rithms are used in this type.

14

Chapter 2: Preliminaries Case-based Reasoning

Diversity of the retrieved cases is an issue of awareness. Suppaesédave a retrieved
caseLy = fCy; Cy;:; Ckgfor the query caseC, , a compromise between the di erence
of similarities among cases i€y is vital. On the one hand and for better retrieval
process, a maximal similarity between each case@x and C, should be guaranteed.
This will preserve the e ectiveness of retrieval process. On thah@r hand, keeping
minimal similarity among the retrieved cases inCx will provide more alternatives
for the user. To attain this diversity without a ecting the quality of Cy, Similarity
Layers [24] can be used for classifying the similarities into levels where casethw
close similarities falls into one layer. Then the nal retrieved cases itdbe chosen out
of cases categorized in these layers.

2.3.5 Case adaptation

In this process, adaptation is performed on the most similar casg(s order to provide
the solution for the query caseC,. In the ideal situations; the adaptation process is
limited to reusing without any modi cations of the solution(s) of retrieved case(s).
There are four types of case adaptation [43]:

i. Null Adaptation: In this type, the adaptation process is restricted to use the
exact solution from the most similar cases without any modi cation.

ii. Transformational Adaptation: In this type, changes to the solution features or
solution structure can be done. For example deleting, adding or miédying some
part is essential to provide the new solution. The adaptation pross may be
limited to changes in the attributes value without changing the struture of case
itself. This type will be utilized in the proposed solution in this thesis.

iii. Generative Adaptation: In this type, the solution is generated from scratch.
This type of adaptation requires some heuristics to provide e cienadaptation
process[[30].

iv. Compositional Adaptation: In this type, the generated solution is combined

from more than one solution.

2.3.6 Learning in CBR

Learning in CBR is performed by simply retaining new solutions. Howereit is
obvious that not all new cases should be saved. This is because thathations of the

15

Chapter 2: Preliminaries Summary

knowledge base size and the quality of cases stored in the knowleldgse. For example
it is obvious that we need not to save the solution generated by theulh adaptation
process, because the provided solutions are the same as thosdéékinowledge base,
so there is no need to add them. Also, we have to be aware of retagpcases with high
similarity with those retained in the knowledge base. This is becauseedlknowledge
base will be lled with cases that are highly similar to each other. Leaing is not
restricted to saving new cases, it also require deleting cases fromowledge base.
Maintaining a high quality knowledge base requires deleting process fedundant
and obsolete cases. Also noisy cases that are that were incorseottained should be
eliminated and removed([6]. Case-Based Learning (CBL) algorithms édapproaches
have been covered by [6] where the learning and memorizing is catraat in CBR.

2.4 Summary

This chapter presented the background information required fdhe reader to follow
this thesis. This chapter paved the way to read the rest of this tlsgs. The de nition
of self-adaptive software system was presented along with the sdacation of it.
Then presented in this chapter the uncertainty principle in softwae engineering and
in particular in self-adaptive software systems. This chapter endewith describing
case-based reasoning (CBR), which is the core of the idea solutidrihos thesis. CBR
was described in details including its life cycle, similarity measures, cas¢rieval, case
adaptation and learning process.

16

Chapter 3

State of The Art

This chapter presents the related work in the area of self-adapésoftware system.
The process of scanning the related work to this thesis is not easy anea of self-
adaptive software systems for many reasons like:

The results sometimes were to generic to relate them to the corepto of this
thesis as the main concern was the adaptation engine in self-adaptisoftware
systems.

The terms used in literature are overlapped and there are many exgssions
that refers to the same thing. For example, the term adaptationrgine can be
substituted with many terms like control unit [14] and autonomic maager [8].
The same issue appears in the alternative terms of "self-adaptivédr example
the term "Autonomic systems" is overlapped with the term "self-adptive" [12].

Self-Adaptivity is contextual based and not restricted to softwee engineering
area. Some elds like (1) arti cial intelligence which concentrates in r@as like
games and robotics and (2) information systems which concentesgtin areas like
service oriented architectures and middlewares uses the selfgiilaty property.

Self-Adaptivity has many contexts in the software engineering eldtself. All
software engineering activities are involved in realizing self-adaptiyitstarting
form requirement elicitation and ending with software maintenance.

This leads to a considerable e ort in deciding and intercepting the retad work to
this thesis.

17

Chapter 3: State of The Art Related work selection criteria

3.1 Related work selection criteria

Some criteria were used in the search process in order to include therk in the
related work. These criteria includes:

Three libraries were searched for the related work to the self-guteve soft-
ware system adaptation engine. The libraries are (1) ACM (2) IEEErad (3)
SpringerLink.

The modularity and the maturity of the self-adaptive software sytem construc-
tion in the related work. Adaptation engine has to be included in the w&
either explicitly or implicitly as the idea of this thesis is to build an externa
adaptation engine.

All the selected related work were in English language.

In the following section | will provide a list of related work.

3.2 Related work

During the last decade, the body of literature in the area of self-agtivity has pro-
vided many of frameworks, approaches and technologies that amice self-adaptivity.
This work is widespread in many solution areas. In the following sectisn will
present the related work categorized according to the mechanismsed to support
self-adaptivity.

3.2.1 Learning based adaptation

Salehie and Tahvildari [33] proposed a framework for realizing the @ding process
performed by external adaptation engine. They use knowledged®ato capture man-
aged system's information namely domain info, goals and utility info. Tk informa-
tion is used in the decision-making algorithm, as they name it, which issponsible
for providing the adaptation decision. This framework is theoretideone which needs
an implementation and evaluation which is not provided by their work.

In [22], Kim and Park provided a reinforcement learning-based appaoh for
architecture-based self-managed software using both on-linedap -line learning.
They used goal and scenario-based techniques for representing requirements of

18

Chapter 3: State of The Art Related work

the system. They provided ve phases for implementing self-managent named De-
tection, Planning, Execution, Evaluation, and learning phases. Inhis work a case
study was used to apply the approach which is a robot that requiresdapting by

learning from previous behaviours. This approach was supportedtlvexperimental

evaluation for two experiments for game robot. Even though thenesults showed that
this approach is e ective for self-management software, but | didot see any relation
between their work and architecture-based software as the nanof the paper tells.
This is why | categorized this work under learning adaptation not atdtecture-based
adaptation.

FUSION was proposed by Elkhodary et al [16] to solve the problem fafreseeing
the changes in environment which hinders the adaptation during rtime for feature
based systems using a machine learning technique. Knowledge baas used for se-
lecting features. An experiment had been provided to evaluate ti@JSION approach
that showed accepted results. One limitation of FUSION is that it lack operating
under uncertainty.

In [20], Mohamed-Hedi et al. provided a self-healing approach to eite the
reliability of web services. They used aspect oriented programmingd case-based
reasoning to provide the adaptation mechanism. A simple experimemas used to
validate their approach without empirical evidence.

3.2.2 Architecture and model based adaptation

RAINBOW [18] is a well-known contribution in the area of self-adaptabn based on
architectural infrastructures reuse. RAINBOW monitors the maaged system using
abstract architectural models to detect any constraints violatin. Managed system's
properties are captured by Rainbow using architectural style nations. A case study
of two systems that share the same system concern with di eremtdaptation styles
was carried out to evaluate RAINBOW. The results showed an e ente satisfaction
with the system's time latency constraint.

GRAF (Graph-based Runtime Adaptation Framework) was proposk by Der-
akhshanmanesh et al. [[14] for engineering self-adaptive softwagstems. Their
approach represented an external adaptation engine becaubeyt separated the busi-
ness logic and adaptation logic. The communication between the maysa system
and GRAF framework is carried out via interfaces. GRAF provided tw types of
adaptations: (1) Adaptation via Parameters and (2) Adaptation va interpretation
of a behavioural model. The second type adapts the control owfdhe adaptable

19

Chapter 3: State of The Art Related work

element of the managed system. They evaluated their approach byeasuring mem-
ory utilization and execution performance. They conclude that the is an overhead
in both metrics measures due to the migration from non-adaptive ogonents into

adaptive ones. This was normal because their approach reprodaa new adaptable
version of the managed system which leads to this overhead.

Similar to GRAF [14], Vogel and Giese [40] assumed that adaptation cée per-
formed in two ways, Parameter adaptation and Structural adagttion. They provided
three steps to resolve structural adaptation and used a selfdiang web application
as an example. This approach comprised both managed system ad@dg@tation logic
with no separation which will face complexity problems if the number afomponents
they are adapting increases. They implemented an application exalapvhich was a
recon guration of components instances within EJB container. Tis approach lacked
evaluation, as the authors assessed their solution by saying it is @ent in terms of
development cost and runtime performance without any softwamn@easures.

Asadollahi et al. [8] presented StarMX framework for realizing setfranagement
for Java-based applications. In their work they provided so calledusonomic man-
ager, which is an adaptation engine that encapsulates the adapiat logic. Adap-
tation logic was implemented by arbitrary policy-rule language. StarM uses JMX
and policy engines to enable self-management. Policies were useddpresent the
adaptation behaviour. This framework is restricted to Java-baskapplication as the
de nition of processes is carried out by implementing certain Java ietfaces in the
policy manager. They evaluated their framework against some qualiattribute.
However, their evaluation for quality attributes was not quanti ed enough. For ex-
ample they evaluated the performance by saying it is acceptable watht providing
any software measures.

Morin et al. [27] presented an architectural based approach foealizing soft-
ware adaptivity using model-driven and aspect oriented technique3he aim of this
approach was to reduce the complexities of system by providing hitectural adapta-
tion based solution. This solution was a requirement for what they daDynamically
adaptive systems (DASs). They provided a model-oriented archidtires and aspect
models for feature designing and selection. This approach had faamponents: (1)
Goal-based reasoning engine, (2) Aspect model weaver, (3) Cguaration checker and
(4) Con guration manager. This approach acts as software praxtt line where vari-
abilities are bounded at runtime and produces a set of con gurati@ They provide
a case study without evaluation that generates two con guratiorscripts.

20

Chapter 3: State of The Art Related work

Khakpour et al. [21] provided PobSAM which is a model-based apprdacPob-
SAM uses policies.to monitor, control and adapt the system behavoand they used
a LTL to check the correctness of adaptation. This work containso experiment and
evaluation for their approach.

The work in [13] provided a new formal language for representinglfsadaptivity
for architecture-based self-adaptation. This language was usasl an extension of the
RAINBOW framework [18]. This work explains the use of this new langgge using
an adaptation selection example that incorporate some stakehotdeinterests in the
selection process of the provided service which represents thajtive service.

Bontchev et al. [10] provides a software engine for adaptable pess controlling
and adaptable web-based delivered content. Their work reusesetifunctionality of
the existing component in order to realize self-adaptivity in archit¢are-based sys-
tems. This work contains only the proposed solution and the implemtgtion without
experiment and evaluation.

3.2.3 Middleware based adaptation

In [9], a prototype for seat adaptation was provided. This prototge uses a middleware
to support adaptive behaviour. This approach was restricted tohe seat adaptation
which is controlled by a software system. Their design had three lage (1) Seat
adaptation manager which is similar to adaptation engine, (2) Middlewa layer and
(3) Tangible layer which is responsible for sensing changes in the seBte adaptation
rules of this prototype are static and they are formatted as if-edsrules. This work
was not evaluated.

Adapta framework [35] was presented as a middleware that enabkself-adaptivity
for components in distributed applications. They separated the Isiness code and the
adaptation logic which is considered as external adaptation enginghe monitoring
service in Adapta framework monitored both hardware and softwa changes with
two monitoring concepts: (1) Resources like CPU, memory and apgitons and (2)
properties like CPU load usage, amount of memory and amount of djgation thread.
| found the separation between these two concepts is not so etiwe as we cannot
monitor a resource without reading its properties and attributes.This work lacked
both experimentation and evaluation.

21

Chapter 3: State of The Art Related work

3.2.4 Fuzzy control based adaptation

Yang et al. [45] proposed a fuzzy-based self-adaptive softwar@fiework. The frame-
work has three layers: (1) Adaptation logic layer, (2) Adaptable stem layer, which is
the managed system and (3) Software Bus. The adaptation logic &yrepresents the
adaptation engine that includes the fuzzy rule-base, fuzzi catioand de-fuzzi cation

components. This framework has a set of design steps in order topiement the

adaptation. The authors did not provide any evaluation measuresnd contented by
claiming that the framework realize the self-adaptation of softwaxr.

POISED [17] introduced a probabilistic approach for handling unceainty in self-
adaptive software systems by providing positive and negative imptgcof uncertainty.
An evaluation experiment had been applied which showed that POISEprovided an
accepted adaptation decision under uncertainty. The limitations ahis approach are
that it handles only internal uncertainty. Also this approach does at memorize and
utilize previous adaptation decisions.

3.2.5 Programming framework based adaptation

Narebdra et al. [28] proposed programming model and run time aitécture for
implementing adaptive service oriented. It was done via a middlewarhat solves the
problem of static binding of services. The adaptation space in this wois limited
to three situations that requires adaptation of services. This wéris supported by
realistic evaluation for health care scenario.

MOSES approach was proposed in the work]11] to provide self-atigjy for SOA
systems. The authors used linear programming problem for formtilag and solving
the adaptivity problem as a model-based framework. MOSES aimed improve the
QoS for SOA and the work in[[11] provides a numerical experiment teegt their
approach.

The work in [44] provided an implementation of architecture-based:E-adaptive
software using aspect oriented programming. They used a webskd system as an
experiment to test their implementation. The used case study empled four self-
adaptation scenarios with corresponding adaptation policy. Theixg@eriment showed
that the response time of the self-adaptive implementation is betteéhan the original
implementation without self-adaptivity mechanism.

Liu and Parashar [23] provided the Accord which is a programming fnaework
that facilitates realizing self-adaptivity in self-managed applications The usage of

22

Chapter 3: State of The Art Discussion

this framework was illustrated using forest re management appli¢ceon. In their
experiment they evaluate the programming overhead of using Aacdo

3.3 Discussion

After investigating the previous related work, some issues neediedbe clari ed with
relation to CRATER.

Many of existing work including those listed in the related work do not vide
quality evaluation metrics.

Most of the related work do not provide information regarding the lirtation
of their approaches and the applicable domains.

Some of these approaches do not consider the space of the adtign. This
appears in three types:

i. Simplistic static adaptation rules that are hard-coded(]9]. It is clear
that this type of solutions is not su cient if we have large number of mssible
adaptations and also the maintainability cost of the system will increse. This
is because each time we have a new adaptation we have to put it in thede
manually and redeploy the application.

ii. Large number of adaptations that are considered in each adapiai
process|]45, 17] which a ects the performance negatively. | supge that for
any adaptation request we need not to search through the wholeimber of
possible adaptation responses.

iii. Previous adaptations are not considered in most approaches in the
previous related work. This means that the system will do the samedm of
adaptation many times which is a redundant computation [17].

Some authors claim that their approaches and frameworks implentehe control-
loop processes. However, | found that most of them do not proédevidences
regarding the design and implementation of these processes. Aample of this
is the work in [33].

Self-adaptivity requires a solution outside the software engineegrto provide
e ective adaptation. These areas of solutions are basicalyti cial intelligence ,

23

Chapter 3: State of The Art Problem statement

Fuzzy implementationsand Probability theory. As a result, new problems may
emerge in the provided solution. Suppose that we use a machine laaghto

solve self-adaptivity. This will lead to problems like accuracy of learngn[16]

for example. These problems are not related to self-adaptivity buhey are

technology speci ¢ consequences. This kind of problems contrileut increasing
the complexity of the system which is not required.

Uncertainty is a challenge in self-adaptive software systems whicltasvnot cov-
ered by most of the work.

Most of work do not incorporate the knowledge component proped by the [1].
This component should be consulted for all phases of adaptationogmess.

Table[3.1 summarizes the related work done in this thesis. The tabledhawvo aspects
of comparison (1) Research aspects and (2) Self-adaptivity aspheThe earlier aspect
is important and represent an indication regarding the maturity andcreditability of
the research. The later aspect is related to the topic of this thesis

3.4 Problem statement

Based on the state of the art described in Sectidn_8.2 and on the smary of the
related work depicted in Table[3.1, it is the time to state the problem tis thesis is
tackling. It is obvious that handling the challenges explained earlier in l@&pter [1
and investigated in Section_3]2 of this chapter is essential in order fwovide an
e cient self-adaptive software system as they a ect the functimality, performance
and trustiness of the self-adaptive software system. The maijtyrof existing solutions
fails to handle those challenges together which forms the motivatiaf this thesis.
Based on that, the problem treated in this thesis is concluded as follo

There is no self-adaptive software system solution that ge$ the following problems
together :

1. Handling and diminishing the uncertainty that hinders th adaptation process.

2. Managing the complexity of adaptation space by rememberithe previously
performed adaptations which has positive impacts on the femance of the
adaptation process.

3. Providing an e cient performance of the adaptation engie.

24

T4

Table 3.1: Summary of Related Work

Research aspects

Self-adaptivity aspects

Covered literature categorization | Work — — - - — - - -
Explicit Explicit Experiment | Evaluation | Limitations | Threats to | Adaptation | Adaptation | Uncertainty | Adap. Adap. Adap.
Problem. | contribution metrics validity Expediency, | remem- Handling Response| style engine
Stat. stat. (usefulness) | brance Time
[33] | X X X X X X X Dynamic | External
] [22] | X X X X X X X X X X Dynamic | External
Learning based adapt. -
[16] | X X X X X X X X X X Dynamic | External
[20] | X X X X X X X X X X Dynamic | External
[zg] | X X X X X X X X Xin [12] X Dynamic | External
[14] | X X X X X X X X X X Dynamic | External
[4q] | X X X X X X X X X X Static Internal
) B] | X X X X X X X X X X Dynamic | External
Architecture & model based adapt. -
[24] | X X X X X X X X X X Dynamic | External
[23] | X X X X X X X X X X Dynamic | Internal
3] | X X X X X X X X X X Static External
[Iay | X X X X X X X X X X Dynamic | External
_ @ |x X X X X X X X X X Static Internal
Middleware based adapt. -
[38] | X X X X X X X X X X Dynamic | External
[45] | X X X X X X X X X X Dynamic | External
Fuzzy control based adapt. .
[x7] | X X X X X X X X X X Dynamic | Internal
[2g] | X X X X X X X X X X Dynamic | External
) [Ia7 | X X X X X X X X X X Dynamic | External
Programming framework based adapt -
[44] | X X X X X X X X X X Dynamic | Internal
[23] | X X X X X X X X X X Dynamic | Internal

Chapter 3: State of The Art Summary

3.5 Summary

This chapter covered the related work to this thesis. Related workwas categorized
into ve categories according to mechanism the self-adaptivity is a with in the
related work. A discussion on the covered state of the art was gented in this
chapter after presenting the state of the art. Problem statenmt was de ned in this
chapter after the discussing the state of the art.

26

Chapter 4

Proposed Solution

Based on the research method presented in Section]1.2, this claptontains the
solution proposed by this thesis. Presented in this chapter the doibbution and
the explanation of how CBR is utilized as an external adaptation engenfor self-
adaptive software systems. Section 4.1 has an example that will beed over this
chapter for clari cation issue. Sectiori 42 contains details about thknowledge base
of CRATER and Section[4.B provides the types of managed systentréiutes. Sec-
tion B.4 is the core section in this chapter that contains subsectiorBscussing how
CRATER is structured. Section[4.5 describes how utility function is wed and es-
timated in CRATER. This chapter ends with Section[4.6 that provides iformation
about uncertainty diminution and how CRATER deals with it.

4.1 Motivating example

This section describes a motivating example used for both explaininge solution
idea of this thesis and for the validation and experimentation of CRAER. In the
following subsections | will describe the a robot that needed to bellsadaptive along
with its requirements and utility function realization.

4.1.1 Robot system

CRATER is utilized to receive an adaptation requests and to providedaptation re-
sponses to be applied on managed system. In order to validate am$tt CRATER,
| chose a robot as a managed system that demands a self-adaptpehaviour dur-
ing runtime. The idea of the robot is derived from[][17] with attribute &tension for

27

Chapter 4: Proposed Solution Motivating example

more realism and variety. Figuré_4]1 shows an abstract view for thesed robot man-
aged system. The robot's main task is exploratory as the robot shid transmit the
captured live video to a remote controlling centre. The componenis Figure [4.1

s Legend
Robot Component Diagram

Quality-related
component

X ——uses—p» Y

1 Sensors Unit X— e dD Y
j Xiaffected byﬁ Y
v '
Movement Unit Powar Urit Video Unit
| Speed Controller | | Power Mode | | Vide Streaming Quality |
| Power Indicator | | Video Encryption Technique |
| Video backup |

Communication Unit

Data Backup
| Band Controller | T Unit

Figure 4.1: Abstract View of Robot Components

are interrelated and one component may a ect the another. This tarrelation con-
tributes in having a set of possible states of the robot which is uséfun explaining
how CRATER works. The components in the robots are:

Power Unit: which is responsible for robot's power management and supply
power to the other components of the robot. | consider only twottibutes of
power unit namely (1) Power mode which is current operating mode likgower
saving mode and (2) Power indicator which represents the availablemaining
power.

Movement Unit: which is responsible for the movement of the robot. | consider
only the speed component of this unit.

Sensors Unit: which represents the sensing mechanism of the robot. | consider
only sensors that indicate whether there is an obstacle looming andepenting
robot during runtime, like heat and objecting mass, or not.

28

Chapter 4: Proposed Solution Motivating example

Video Unit: which is responsible for video streaming functionality of the robot.
| consider the attributes video quality and video encryption.

Data Backup: which is responsible for storing video in case of the communica-
tion unit fails to work.

Communication Unit: which is responsible for the communication with the
remote centre. | assume that communication unit is used for live tremitting
the of video that the robot is capturing and works within some commmication
bands such VHF and UHF.

Table 4.1: Robot attribute data sheet
Attribute Values

Communication | fOFF;VHF; X band; UHFg
Power Mode | fFull Power; Medium P ower; Saving Modey
Power Indicator | f Low; Medium; High g
Speed f Low; Medium; High g
Video quality | fV ery low; Low; Medium; High; V ery highg
Data Backup | fOn; Off g
Obstacles fOn; Off g
Encryption f Zig-Zag Permutation, Puer Permutation, Naive,Video En-
cryption Algorithm (VEA) g

Figure[4.1 shows some quality-related components. These compudsadas a direct
impact on the quality of delivered service by the robot. For instancthe component
"Video Encryption Technique" a ects the security of the transmitted data. Similarly
the component "Communication Band" a ects quality of communicaion channel.
Table [4.1 shows the robot attributes set with their values. Un-addpble attributes
are Power Indicator and Obstacles which represent a read only abiute and can not
be altered during the adaptation process. The rest are adaptald¢tributes and their
values can be changed during the adaptation process.

29

Chapter 4: Proposed Solution Motivating example

4.1.2 Robot goals

Generally, managed system's goals are the functioning and qualitygrerement pro-
vided by the customer and related to adaptation process. The folling subsections
are dedicated to explain the system goals of the robot.

4.1.2.1 Quality-related requirements

Table [4.2 shows the robot's quality-related goals. Trade-o betweethe quality at-
tributes is required to provide a better overall quality of the robot For example the
security attribute presented in Table[4.2 requires compromising wheselecting one
of them because they are a ected by the power unit. Table 4.3 shevall of encryp-
tion techniques along with their characteristics. Robot task is to a@ose one among
them according to robot's state. This is because high security egption techniques
requires more computational e ort which requires more power ceamption. This
means that the robot should choose the encryption technique thauits its state,
more precisely its power state.

Table 4.2: Robot quality requirements

Goal Descriptions

Transmission Security | This goal is about keeping the transmitted data as secure as
possible. This is done by selecting one among set of encryption
algorithm as each of them has its advantages and drawbacks.
Table[4.3 shows example of trade-o s among these algorithms.
Video Quality This goal is about keeping the video quality as better as pos
sible. This is done by selecting the appropriate video qualif]
during runtime. Power a ects this goal as higher qualities
requires more power consumption.
Communication quality | This goal is about keeping the communication channel as
as possible. Some communication bands requires more power
and some of them has low coverage.

<

30

Chapter 4: Proposed Solution Motivating example

Table 4.3: Encryption techniques characteristics

Technique Security level | Encryption performance
Zig-Zag Permutation Very low Very fast
Puer Permutation Low Super fast
Naive High Slow
Video Encryption Algorithm (VEA) High Fast

4.1.2.2 Functioning requirements

In addition to the quality requirements, a set of functioning requirments are essential
for robot operation. Table[4.4 shows the functioning requirementthat keeps the
robot t and provides the required functions in terms of adaptatiam process.

Table 4.4: Robot functioning requirements

Goal

Descriptions

Power consumption

The robot should change its power mode according to power

indicator reading. If power indicator reading is 'low' and the
power mode is 'Full power' for example, the robot should alte
the power mode and reduce it e.g. 'Saving mode' and re ec
this change to other components.

Robot Fitness

The robot should maintain its tness and manage the relation
between the speed and power. The robot should reduce
speed if (1) the power is not su cient or (2) an obstacle is

detected i.e. 'Obstacle' attribute has a value 'true' . The same

thing is applied on the relation between power mode and vide
quality as higher video qualities requires more power.

Data backup

If the communication with the remote centre is lost, the robot
should enable the data backup till the communication is of

again. This requires to reduce the video quality due to limit

N

tation on the space of backup storage.

31

Chapter 4: Proposed Solution CBR knowledge base
4.2 CBR knowledge base

A knowledge base intuitively saves the cases for future retrievalqress. In CRATER
the knowledge base saves the states of the managed system $bahno case in the
knowledge base contains goal violations of the managed system.eTdorrectness of
the knowledge base i.e. the knowledge base that contains only desieastates of the
managed system, is guaranteed in the retain process where noecasretained unless
it has a utility greater than UT . Knowledge base is modelled with domain experts by
capturing all managed system's attributes that are related to th@daptation process.
The operation performed on the knowledge base is restricted to)(tase retrieval
and (2) case retain. An advantage of the knowledge base is thatetdomain expert
can investigate it for o ine maintenance i.e. add new cases, removeases and alter
cases. The cases stored in the knowledge base always have a utiatye greater than
UT. This facilitates the retrieval process and provides always an e&ient adaptation
response that saves the system from running in unwanted sat@he quality of cases
stored in the knowledge base can be controlled by retaining only casehich have
utility greater than certain value. This option is vital in keeping the krowledge
base e ective and e cient. Based on the example in section 4.1 the kaledge base
contains a set of cases that holds the values of robot attributeperating in desired
states which means they have utility greater than UT.

4.3 Managed system attributes

Managed system operating states and con gurations are modellad CBR cases. Each
case has a set of attributes that have both types and weights adlivibe explained in
the following subsections.

4.3.1 Attribute types

Case attributes can be agged as one or more of the following typ@s Table (4.3
assuming that no attribute can take two contradicting types e.g. Aaptable and Un-
adaptable at the same time.Utility threshold breaker attribute type is used during
the analysis process of the managed system state because thapgation process
will alter the values of these attributes. Utility antagonist attribute type is used to

lsee Sectiof 113 for the de nition of Utility Threshold

32

Chapter 4: Proposed Solution Managed system attributes

indicate the attributes that contributes in reducing the utility of the managed system.
Utility antagonist can be used in CRATER to provide the best adaptaibn response.

Table 4.5: Managed System Attribute Types

Attribute Type Description
Adaptable Denotes an attribute whose value can be changed during the
adaptation process likeSpeedattribute.
Un-adaptable Denotes an attribute whose value can not be changed during

the adaptation process likeObstaclesattribute.
Utility threshold breaker | Denotes an attributes whose value contributes in providing
goal violating state.
Utility antagonist Denotes an attribute whose value contributes in decreasing
the utility of the managed system.

4.3.2 Attribute weight

It is normal that attributes do not have the same e ect on the mamaged system state.
Some of the managed system's attributes have greater e ect thahe others. Based
on that, Pareto principle [29] is considered and each attribute is vghted in order to
provide optimal representation and modelling for the state of the anaged system.
In addition, attributes weighting is an essential process for two asons:

If the adaptation request has un-adaptable attribute among théJT breaker
attributes then we can only change the adaptable attribute valuesCRATER
knows how to do that my means of weighting. All un-adaptable attribtes
must have values grater than the adaptable attributes values. T directive
modelling helps CRATER to provide a meaningful and applicable adapten
response for the managed system.

Weighting is essential also in quantifying and measuring uncertainty iadapta-
tion request.

33

Chapter 4: Proposed Solution CBR as adaptation engine

4.4 CBR as adaptation engine

The main idea of this thesis is using case-based reasoning (CBR) as eaternal
adaptation engine. This idea is inspired form the compatibility betwee@BR life cycle
discussed in_2.3]2 and shown in Figufe 2.2 from one side and the closadrobloop
and adaptation process discussed [n 2.1 and shown in Figlrel 2.1. Mprecisely the
CBR engine works as the proced$3eciding in Figure[2Z.1 which is an important process
in the self-adaptation process that provides the adaptation actis. CBR is used as
external adaptation engine that embraces the knowledge basetbé self-adaptivity
related attributes of the managed system. This external adapti@an engine receives
adaptation request and responds with adaptation response as wile described in
the next sections. The novelty of CRATER is that it utilizes not only the similarity
measures but also the utility functions in both the assessment ofeélretrieved cases
from the knowledge base and in constructing new adaptations. These of utility
functions enables CRATER to startup from empty knowledge basehich represents
a challenge in the applications of CBR.

Figure[4.2 shows the mechanism of CRATER and how it works. In the lfowing
subsections | will present detailed information about each the coropents in that
gure.

4.4.1 Adaptation request

As explained in Sectior 113, the adaptation request is a managed ®ysts state that
violates the managed system's goals. Adaptation requests are tsenreality when
the system enters or reaches unwanted state which should berceene by the system.
Adaptation requests in CRATER contain the attributes of the manged system at the
point of the violation. This means that CRATER treats self-adaptivity in a reactive
or proactive way depending on the implementation of monitoring pr@ss. Concisely,

managed system at adaptation initiation point. A subset of these aibutes are
adaptable attributes. Adaptation request in CRATER is any state hat breaks the
UT B of the managed system. Adaptation request is sent to the adapian engine,
which is the CBR engine, in order to do the adaptation process on it.os to provide
adaptation request, a monitoring process is needed as shown in Fgd.1. The task
of the componentobserve and decidés to monitor the managed system and detect

2section[4.5 provides details about system utility

34

Chapter 4. Proposed Solution

CBR as adaptation engine

External Adaptation
Engine (CBR Engine)

\\7 -

Retrieve

Similarity measures
& Retrieval Techniques

Utility
— Functions
3

Adaptation Techniques Adapted
Retrieved & Utility functions -
ase
Cases .
Domain Knowledge X
7 = \
/ /

Lnowledge Base

.

\\ Confirmed
\\ Learning /// case
\ o
b
\
\\ //
\\\ // Z
S .) -
Adaptation ™ Asaptatmn P y
Request \ esponse -
| /
/r
~Observe &
serve & 1
: Execute
(Decide <_/>
Adaptation
Mediator
Read' Execute
system's adaptation
attributes

Managed System

Figure 4.2: CRATER Reference Model

35

Chapter 4: Proposed Solution CBR as adaptation engine

if there is a violation in the state of the managed system. If the morot detects
a violation then an adaptation request is formed by collecting manadesystem's
attributes' values and pass them to the CBR engine aslaptation request An example
of adaptation request is fPower 7! Full power, Video Streaming quality7! Very

High, Obstacles/! True, Speed7! Fastg. This is a robot state that contains a set of
values for a robot system's attribute. This state represents uramted operating state
assuming that the robot speed should not be fast if an obstacle istéleted. This

state is a typical adaptation request because of goal deviation gh is a utility value

breaking the utility threshold.

4.4.2 Adaptation response

Adaptation response is the result of the adaptation process geated by the CBR

engine. It is an object that contains a corrective operating statéhat rescue the
managed system from its violating state. Adaptation response ntubave a utility

greater than UT value. Obviously the adaptation response with geger utility value

is better. To apply the adaptation response, aexecutecomponent is mandatory. If
the adaptation response succeed in overcome the UT of the maadgsystem, this
adaptation response is retained in the knowledge base for futureeu An adaptation
response for the adaptation request in the previous section ffPower 7! Full power,
Video Streaming quality 7! Very High, Obstacles7! True, Speed7! Slowg. It is

obvious that the cause of unwanted state is the high speed while deting an obstacle.
The corrective adaptation response changes the speedsiow which raises the utility
of the robot and make it greater than UT.

4.4.3 Adaptation process

Adaptation process is the process that starts when the CBR eng@meceives adapta-
tion request and ends with providing adaptation response. Algorith [summarizes
this process. The following subsections describes in details the at#djon process.

4.4.3.1 Analysing adaptation request

When the CBR adaptation engine receives an adaptation request inalyses it to
identify attributes that causes UT break and attributes that abde the managed
system utility. This identi cation helps in providing e cient adaptation response by

36

Chapter 4: Proposed Solution CBR as adaptation engine

Algorithm 1 CRATER adaptation process

Require: KB , Agq
Ensure: Utility(A (es) > UT

1:

e e O i i e =
@ g kK W N RO

List cases(Retrieve (KB,A(eq)
List quali edAdaptationFrame
Case Aes
while Case c(Iterate(cases)do
if Sim(Aeq,C) 2 [1,] then
quali edAdaptationFrame.add(c)
end if
end while
if quali edAdaptationFrame is not Empty then
Ares (max(CaseExpediency(quali edAdaptationFrame))
Return Ajes

. else

Ares (ConstructiveAdapt(Aeq)
Retain (Aes,KB)
Return Apes

s end if

37

Chapter 4: Proposed Solution CBR as adaptation engine

changing the values of these two types of attributes to get highettility as much as
possible.

4.4.3.2 Case retrieval

Case retrieval is a CBR core functionality. We retrieve the most simitacase or
cases to the adaptation request. The adaptation request is foutated by excluding
adaptation request's attributes that break UT form retrieval cdculation process. This
exclusion is inevitable because the knowledge base keeps only thet lopgrating

states which mean that no case in the knowledge base has attribwiues that break
UT. Then exclusion becomes logical because by doing it the similarity taeen the
adaptation request and cases stored in the knowledge base beesmore realistic. An
example for excluded attribute based on the example in sectibn4.1Speedattribute.

This is because the speed causes the robot utility to break utility tieshold. Even
though both Speedand Obstaclescontribute in breaking the UT, we exclude just
speed attribute because it is adaptable attribute unlike the obstée attribute which

is not adaptable.

4.4.3.3 Constructing QAF

The retrieval process for adaptation requestdaptationgeq returns a set of case€g
such that each cas€y in this set satis es the condition:

Sim(Cy; Adaptationgeyg) 1 4.1)

where is a value between [0,1] that represents the minimal similarity value
for accepting retrieved cases from the knowledge base a8dn is a function that
calculates the similarity between the adaptation request and eacbtrieved case.Sim
function is implemented in the CBR engine implementatiori [2]. The set ohses that
satis es the previous condition are calledQuali ed Adaptation Frame. So is the
su cient similarity for qualifying a case to the quali ed adaptation fra me. Integrating

has the advantages: (1) it provides an alternative options by prading more than
one case in the provided quali ed adaptation frame (2) exclude namlated cases to
the adaptation request and (3) utilizes the knowledge in the similar sas because
the similarity is not the only decisive criteria in providing the adaptationresponse
as the utility of the case is also important. Suppose that a PC recomander system

38

Chapter 4: Proposed Solution CBR as adaptation engine

utilizes both CBR and utility. The user of the system demands a custoized PC
with 3GB of RAM. The result of the retrieval returns two identical PCs except the
amount of RAM. The rst result has similarity 100% to the user querywith 3GB of

RAM and 0.95 utility and the second result has similarity 97% with 4GB of RM and

0.98 utility. It is obvious that even the rst result is what the customer wanted from
the beginning, but he/she could be interested in the second PC wieethe amount
of RAM is more which increases the utility. This is why an integration beteen the
similarity and the utility should be considered when choosing the adaation response
case from the quali ed adaptation frame. The combination betweethe similarity

and the utility is called case expediency. If we want to consider only ¢hidentical
case i.e. cases with similarity of 100% to the adaptation request theve set to

one. In this situation the quali ed adaptation frame will contain only a case with
100% similarity to adaptation request if exists in the knowledge baséAs shown in
algorithm[Il the returned case i.e. the adaptation response is thesesthat satis es the
previous condition in equatiori 4.1l i.e. it is in the quali ed adaptation frane and has
the highest expediency. The expediency of a case in the quali ed qdation frame

is calculated in CRATER by Equation[4.2:

CE(Coar =1 [(1 sim(Adapeq;C)) utility (c)] (4.2)

where CE is the case expediencyor a casec in the quali ed adaptation frame
and sim is the similarity between the adaptation requestAdap.e, and the casec.
Equation[4.2 returns one if the similarity is one which represents theelghts level of
similarity and of course the utility is greater than the utility threshold as all cases in
the knowledge base have utilities greater than utility threshold. Ifte utility is one
then the case expediency value equals the similarity value. This now@mbination
in calculating case expediency is crucial:

On the one hand the inclusion of similarity of the retrieved case in callating
case expediency is important as higher similarity leads to less changeshe
managed system state which is an important issue. If the similarity eqls
one, which means that theAdap.q and the casec are identical, then the case
expediency is one.

On the other hand the inclusion of the utility of the case is not less imptant
than similarity inclusion that is because the utility re ects the quality of meeting
managed system's goals.

39

Chapter 4: Proposed Solution CBR as adaptation engine

Noting that all cases in the knowledge base represents a non-viahgt states, re-
trieving cases that are not utility breaker is realized by default andhe adaptation

process always returns a case with utility greater than UT. If is set to 1 then the
guali ed adaptation response is the case that has similarity abne and certainly a

utility greater than UT. In this case if the quali ed adaptation frame is not empty, it

contains only one adaptation response that is unique because thewledge base will
not save two identical cases. This is guaranteed by the nature o0RBTER mecha-

nism as CRATER do not generate new case unless the knowledge Hasgs to provide

the required adaptation response. So only the newly generatedseas saved in the
knowledge base.

4.4.3.4 Generate adaptation response

If no case satis es the previous condition e.g. the quali ed adaptain frame is empty,
CRATER will generate the adaptation response based on the utilityuhction by
adapting the adaptation request attributes in order to provide a ase with utility
greater than UT. This is done with the help of the previously identi edattributes
that break UT. This process is calledUtility-guided constructive adaptationwhich
has two avours:

First Fit Heuristic : It is a normal iterative search process in the space values of
the attributes [30] applied on the adaptation request that break&T. The rst
values that cause the utility of adaptation request greater than U is returned

as adaptation response and the search stops. Algorithimh 2 explabhss type of
adaptation.

Best Fit Heuristic: Which is an extension of the rst t heuristic with extra
capability that is the search process nds values that maximize thetility of
the adaptation response. Algorithni3 explains this type of adaptain.

If the adaptation response is generated by one of the previousysathe utility of
the generated case is considered as the expediency.

4.4.3.5 Retain

Retain phase is restricted to the newly generated adaptation respse from the Utility-
guided constructive adaptation process. Because all generatdaptation response

40

Chapter 4: Proposed Solution CBR as adaptation engine

Algorithm 2 First Fit Heuristic Constructive Adaptation

Require: Areq , KB

Ensure: Utility(A (es) > UT

. Case Aes

2: List UTbreaker (Analyse(Awq)

3: while (AttributeValue a, (Iterate(Values(UTbreaker))) do
4 Ares (apply(Areq ,av)

5: if Utility(A ,es) > UT then stop
6

7

8

9

=

end if
. end while
. Retain (A es,KB)
: Return Ares

Algorithm 3 Best Fit Heuristic Constructive Adaptation

Require: Areq , KB
Ensure: Utility(A (es) > UT
1: Case Aes

2: utilityValue (O

3: List UTbreakerAttributes (Analyse(Aweq)
4. while (AttributeValue a, (Iterate(Values(UTbreakerAttributes))) do
5: Case temp(apply(Areq ,av)

6: if Utility(temp) > utilityValue then

7 utilityValue (Utility(temp)

8: Ares = temp

9: end if

10: end while

11: Retain (A es,KB)

12: Return Aes

41

Chapter 4: Proposed Solution Utility function

from both rst t and best t has a utility greater than UT, they ar e quali ed for re-
taining in the knowledge base for future reuse. It is clear that CRAER is able start
operating with empty knowledge base which considered an advaneagThe utility
function governs the learning process which guarantees the qugldf retained cases.
During the runtime of CRATER, the number of retained cases in the howledge base
will increase which raises likelihood of returning adaptation respongestead of gen-
erating it from scratch. This has a positive impacts on the perforrmece of CRATER
and reduces the response time signi cantly. Figuife 4.3 depicts thdaptation process
performed by CRATER as a ow chart.

4.5 Utility function

This section provides information and details about utility function am how it is used
in CRATER. The following subsections contains intensive explanationf ehat.

4.5.1 Utility function importance

Utility function is used in CRATER to capture system goals. | combinedhe utility
function concept in the functionality of CRATER in order to:

Incorporate functional and quality requirement assessment fone cases.
Provide a heuristic for the adaptation generation process.

Provide a rmation regarding the adaptation response usefulnesand expedi-
ency.

Analysis the adaptation requests in order to identify UT breaker dtibutes.

Determine the managed system desirable and undesirable statedchhare cru-
cial for the adaptation process.

4.5.2 Utility function de nition

Utility functions represents the heuristics for both (1) identifyingthe cause of adapta-
tion request by inspecting the managed system attribute or attribtes that originate
this adaptation request and (2) generating adaptation requesis CRATER. Basically

42

Chapter 4. Proposed Solution

Utility function

.

/
(Start)
\

/ Retrieve

cases from
KB into S

S= retrieved cases
R =null

QAF={}

—<S is not empty

y—YeSj
/ / /
/

A
/ Initialize /

S "

/ QAF /
/ /
L
No |
N _~ QAFisnot . Yes
o . \empty? /
vVv T
Find
/ / Highest
/' Generate case
/ adaptation / expediency
L /
\ 4 A\ 4
R= New generated R= Highest case
case expediency
\ 4

/

/ KB

) AN
/

// /

/" Retain Rin

/

~
.

/ R /
/ /
/ /

/ \ AN
r// h
End
\

43

Figure 4.3: Adaptation Response Estimation Flow Chart

Chapter 4: Proposed Solution Utility function

utility function is a function that maps a set of attributes to a value if certain condi-
tion holds. Normally the certain condition represents attributes dasfactory values.
For a simplicity, the utility function de nition in this thesis is elaborated based on
the work in [25] and extended in order to combine multiple utility-involve attributes.
Generally, the utility function in CRATER is de ned in Equation £.31an looks like:

8
1 if condition; holds
% Vo if condition, holds
Utility (a;::a) = (4.3)
% Vi 1 if condition,, ; holds

Vn Otherwise
where:

(ai,...,&) is the set of involved managed system attributes for this utility fune
tion.

(V1,...,vn) are the values of the utility function.

(conditiong,...,condition; ;) is a set of condition for satisfying the utility func-
tion.

4.5.3 Utility function weight

In reality the adaptation involved attributes in the managed systemcan be repre-
sented by more than one utility function due to the correlated e ets among attribute.
As a result one attribute can be involved in more than one utility funabn. Weighting
these utility functions is a crucial issue in modelling managed systemajs. Weight-
ing process simply attached a weight to each of the utility functionsThe more the
weigh is the more important this utility function is. Weighting process nrmally is
the task of the domain expert.

4.5.4 Overall utility function

If the managed system's goals has been captured as many utility ifions then we
need a solution for nding the overall utility of the managed system irterms of its
utility function. Weighted Geometric Mean(WGM) is used for that end because the

44

Chapter 4: Proposed Solution Utility function

WGM is a ected by all utility function values and also works if one of theutility
values is zero. If we have a set of utility functions values = fug;uy; :::; u,g with
corresponding weightsW = fw;;w;y; :::; w,g then the overall utility is estimated by
the following equation:

¥ Wi\ 1= P i
Uoveran = (- uj")¥0 = ™) (4.4)
i=1

455 Utility function examples

As explained earlier the utility function is used mainly to capture managd system
goals. In this section | will present examples of utility functions usetb represent
robot's goals explained in Section 4.1.2.

An example of utility function looks like:

8
2 01 if (Speed=High and Obstacles=True holds
Utility (speed;obstacles = 5 08 if (Speed=Medium and Obstacles=Falséjolds

1 Otherwise
(4.5)

In the example shown in Equatiorii4]5, assuming that utility threshold i€:1, the
utility value of this utility function equals 0:1 if the robot's speed isHIGH and the
robot detects an obstacle in the surrounding which is representdsy TRUE value
for the attribute obstacles. Utility function values normally should lave values [0,1]
where Q1 value represents a violation of system goals anderepresents the ideal op-
eration state. If the utility value is less than or equal UT then the sate of the system
at this point represents an adaptation request and the attribute involved the utility
function that has UT breaker value should be changed to get rid ohé cause of viola-
tion. In our example if we want to react to the adaptation request gnerated because
of the Utility (speed:obstacie Utility function then it is obvious that we can not change the
obstacle attribute because it is not adaptable attribute and we caonly change the
value of speed. Logically we have to reduce the speed of robot anake it Medium or
Low depending on what value will make the higher utility. Theotherwisecondition in
the example makes the speed valu®w to provide maximum utility for this function.

45

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

g 0 if (PM=1 and (VQ=5 or VQ=4)) holds
0:4 if (PM=1 and VQ=3) holds
3 05 if (PM=2 and (VQ=5 or VQ=4)) holds
0:99 Otherwise
The utility function described in Equation[4.6 represents the relatioletweenPower
Mode and Video Quality. If the power mode is 1 i.e. 'Low' and the video quality
is 'Very High' or 'High' then the value of the utility function is zero. Similarly, if
the power mode is 'Low' and the video quality is ‘Medium' the value of thisutility
function is 0.4. Zero utility functions represents a robot state whie an adaptation
is required. The zero value of any utility function cause the overalltility function
equals to zero because | us&/eighted Geometric Meanfor calculating the overall
utility as described in Sectiori4.5]4. Each utility function has a weigh toepresent its
e ect. The utility function can describe the behaviour of one attritute and also the
relationship between two attributes or more. The utility function can represent the
relation amongn attributes. For example if we want to represent the utility function
among the attributesf Power Mode, Video Quality, Transmission Security then the
utility function for these three attribute looks like Equation [4.7:
g 01 if (PM=3 and (VQ=1 or VQ=2) and TS=1) holds
0:5 if (PM=2 and VQ=2 and TS=1) holds
3 08 if (PM=1 and VQ=3 and TS=3) holds
0:99 Otherwise

Utl'lty (PMVQ) = (46)

Ut|||ty (PM;VQTS) =

(4.7)
Thus the nature of the utility function de nition in CRATER enables inc orporat-
ing many attributes which provides a comprehensive way in capturingpe managed
system goals. The rest of the utility functions of the robot is de nd in the same
manner. It is normal to have more than one utility function with utility value less
than or equal UT breaker value. All UT breakers should be handledhd resolved in
order to provide e cient adaptation response.

4.6 Uncertainty diminution in CRATER

Uncertainty is a challenge that hinders the adaptation process. larder to continue
in this section | need to gure out some assumptions and intuitive is&s regarding

46

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

uncertainty handling in CRATER:

Exact utility of the managed system state is not deterministic in the pesence
of uncertainty. Instead all possibilities of uncertain data should beonsidered
for providing e cient handling of uncertainty.

In order to evaluate and handle uncertainty in the managed systemstate we
need to measure uncertainty. This measurement is important as itrgvides
directives for the adaptation process under uncertainty.

Needless to emphasis that raising the utility of the managed system as ul-
timate goal particularly in CRATER. If CRATER faces uncertain state of the
managed system then it tries to nd the best adaptation responsthat raises
the utility of the managed system.

4.6.1 Uncertainty handling

Generaly there is two ways in dealing with uncertainty in the context outility func-
tion:

Optimistic Paradigm: Which deals with the uncertain values as values that
heighten the utility.

Pessimistic Paradigm: Which deals with the uncertain values as values that
belittle the utility.

Even though both of these two paradigms has its own advantageadcadrawbacks,
but they do not provide an e ective way of handling uncertainty paticularly if more
than one attribute in the uncertainty-concern object has uncéain values. CRATER
follows a Hybrid Paradigm where it analysis the uncertain situation for better and
e cient adaptation by:

Analysing the uncertain managed system state and construct aete of all pos-
sible states and then calculates overall uncertainty.

If at least one of the elements of this tree represents adaptatisaquest i.e. a
state that breaks the UT, then CRATER issues adaptation proces

The issuance of adaptation process under uncertainty can be trmfled in
CRATER via i.e. if is one then CRATER behaves pessimistically while

a7

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

when is zero CRATER behaves optimistically. Normally has a value greater
than zero and less than one and CRATER considers only uncertairgiéess than
or equal this value.

According to the three dimensions of uncertainty discussed in Semt [Z.2 the
following subsections show how uncertainty is classi ed, quanti edrad handled in
CRATER.

4.6.2 CRATER's uncertainty location

Uncertainty location is the location where uncertainty appears. lis important to

locate uncertainty in order to measure and diminish it. More speci dy uncertainty

appears within CRATER model in (1) the adaptation request attribues' values in
the adaptation requests and (2) in the quali ed adaptation frame.The former is due
to knowledge shortage in the adaptation request attributes valge This could be due
to environment reasons or managed system measurement erriorproviding known

values. The later is due to variability in adaptation responses in cas@dt we have
more than one adaptation response in the quali ed adaptation frammwith the same
case expediency. This means that CRATER is uncertain regarding wh case to
return as adaptation response among cases in the quali ed adapta frame.

4.6.3 CRATER's uncertainty level

Uncertainty level is a quanti cation for uncertainty. In CRATER we need to specify
the degree of uncertainty in all locations it appears in e.g. the adagtion request
and in the quali ed adaptation frame in order to consider and handle itater on the
adaptation process.

4.6.3.1 Adaptation request uncertainty

The uncertainty in the adaptation request is a result of uncertaintate of the managed
system. If the managed system has uncertain values at least in oofeits attributes
then we need to know if this state demands an adaptation processrwt. In order
to perform that we need to analyse the managed system's state.ugpose one of
managed system attributes has uncertain values represented gyestion mark '?".
The analysis process converts this state into set of states thabrdains all possible
states by replacing the question marked values with all possible vatuassuming the

48

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

managed system has a prede ned values space for all attributd=or example if the
managed system is modelled as set of attributé®\,; A,; As; A4g and each attribute
has a set of possible valuddl; 2; 3g. Managed system state could bgl; 1; 2; 1g which
represents a state with certain values i.e. certain state. Howeydor some reason the
state of managed system could He?; 1; 3; 2g which represents a state with uncertainty.
This sates requires the analysis process in order to check whetki@s state holds an
adaptation request or not and what is the probability of that. To pe&form this process,
we need to make all possible states out of this uncertain state whihthe set of all
combinations: ff 1;1;3;29;f2;1; 3;2g;f 3; 1, 3;299. The next step is to estimate the
utility of each state in in order to determine the number of states that requires
adaptation process e.g. UT breaker states. CRATERS perform aptation for any
state in that breaks the utility threshold and chooses the case with maximuroase
expediency as an adaptation response. Choosing the highest ad#ipn expediency
among all adaptation responses is based on the assumption disedsabove that the
ultimate goal is to raise the utility of the managed system. After thisexplanation
we can quantify two things: (1) the adaptation request ratio () of managed system
uncertain state and (2) the degree of uncertainty in the managesystem state.

Adaptation request ratio () is a value2 [1; 0] and determined as shown in Algo-
rithm 4]by the following equation:

<

Size()

(4.8)

The uncertainty degree in the managed system state () is a valu [1;0] and
estimated by:

uncertain attributes

. 4.9
all state attributes (4.9)

Equation [£.9 returns zero if there is no attribute in the adaptation equest with
uncertain values. It returns one if all attributes of the adaptatio request are uncertain
values.

It is important also to estimate the overall uncertainty in the managed system state
with uncertain values. If () equals one, which means that all states in the set) are
utility threshold breakers, this means that it is the highest level of ncertainty in the
managed system state and makes Y equals also one. The same reasoning is applied
on () which means that if () is one i.e. all attributes of the managed system state

49

Chapter 4: Proposed Solution Uncertainty diminution in CRATER

Algorithm 4 Estimating
Require: UncertainState S

Ensure: S has uncertain values
1. List (PossibleStates(S)

2<(0

3: while has more elementslo
4: State temp(Next()

5: if Utility(temp) UT then
6: increment <

7: end if

8: end while -

9: Return Size()

are uncertain, and then () is one also. Based on this argument | is calculated in
CRATER by the following equation:

=1 @) @) (4.10)

The overall uncertainty() is useful in providing insights regarding (1) uncertainty
in the managed system state and (2) the appropriateness of adaion response. The
overall uncertainty () is a variable in CRATER model. This means that CRATER
will issue adaptation process if the managed system uncertain st () estimation is
less than or equal a prede ned value e.g. if { equals 0.8 in CRATER con gurations
and the managed system state's | value is greater than 0.8 then no adaptation
is issued due to high percentage of uncertainty. Determining X is crucial issue
because it directs CRATER when to issue adaptation process if theamaged system
state is uncertain and to avoid risky adaptations. Suppose) value in the managed
system state is 0.99 which means that the managed system uncerta is too high
which contributes in (1) bigger variety of possible states and (2) me processing and
computation done by the adaptation engine. By limiting () to some value e.g. 85%
CRATER managed to provide adaptation response at reasonablesponse time.

4.6.3.2 Uncertainty in quali ed adaptation frame

Uncertainty in the quali ed adaptation frame occurs if there exist nore than one
case satisfying the highest expediency. For example if the quali edl@ptation frame

50

Chapter 4: Proposed Solution Summary

has two states with (similarity,utility) of (0.95,0.8) and (0.9,0.4). Based on the
Equation[4.2 both cases have the same case expediency which93.0This situation
represents uncertainty for CRATER and the selected case is thase with the higher
utility because the ultimate goal of the adaptation process is to rasthe utility of

the system as much as possible as assumed in Secfion 4.6. The uagdyt in the

guali ed adaptation frame is estimated in CRATER by the following equ#on:

Unpe = — N
AT T Size(QAF)
where N is the number of cases with identical highest expediency.

(4.11)

4.7 Summary

This chapter covered in details the idea solution part of this thesis. Anotivating
example was presented to illustrate the need of self-adaptivity. Aethiled description
of the proposed solution was discussed in this chapter including hovBR is utilized
as an adaptation engine and the managed system attributes modefjin The usage
of utility function in CRATER was introduced in this chapter describing how it is
utilized to represent the managed system's goals. Uncertainty hdimg in CRATER
was also presented in this chapter. Uncertainty quanti cation, uoertainty location
determination and uncertainty degree were presented and explathin the CRATER
uncertainty handling mechanism.

51

Chapter 5
Implementation

This chapter provides details regarding the implementation of CRATR. Section[5.1
contains information about the implementation and the architectue of CRATER.

Section[5.2 provides information about the generation of adaptatiorequests and
Section[5.B explains how the monitoring process is implemented. Secti@4 illus-
trates the implemented classes while Section'5.5 shows the used taolhe develop-
ment process. This chapter ends with Sectidn .6 which describesvhancertainty is

realized, injected and dealt with in the prototypical implementation &6 CRATER.

5.1 CRATER architecture

This section describes a prototypical implementation of CRATER framework. Fig-
ure[5.1 shows the execution view of CRATER's architecture. In thelowing subsec-
tions | will explain in more details the components included in that gure

5.1.1 Knowledge base modelling

Knowledge base can be modelled in many forms. Due to the selectedechase rea-
soning implementation [[2], the knowledge base is modelled Bsb Separated Values
(TSV) le. This le hold the cases that are ready to be adaptation response. Fig-
ure [5.2 illustrates how the knowledge base looks like. The cases in theowkledge
base can be de ned by the domain expert in addition to the newly leaed cases. In
the experiment | will start from empty knowledge base.

52

Chapter 5: Implementation CRATER architecture

% CBR Engine
é Retain
<write>, 1 /
Knowledge Adapt
Base Reuse
<<read>>
% Retrieve
<<trigger <<consume
adaptation>> adaptation>>
1 .
Mediator

% Monitor % Execute

Figure 5.1: CRATER's Architecture: Execution View

5.1.2 CBR engine

CRATER uitilizes the Case-based reasoning arti cial intelligence tectique. CRATERS
uses CBR as an adaptation engine as described in Chagtér 4. To tleatd, | used an
open source CBR implementation_[2] that provides basic functionaliseof case-based
reasoning like case retrial and similarity calculations. The componeRtetrieve in Fig-
ure5.1 is implemented by([2]. The two other componenté&dapt/Reuse and Retain
is an addition by me to the work [2] and explained in the following subseonhs.

5.1.2.1 Adapt/Reuse component

This component is responsible for providing the adaptation respamgor the execute
and retain components. The process of this component works afidw:

The retrieval component is responsible for returning the similar cas as de-
scribed in Chapter[4 that satis es the condition and initialize the Quali ed
Adaptation Frame.

If the quali ed adaptation frame is not empty, then this componentreturns the
case with the highest expediency.

Otherwise, due to empty knowledge base or not satisfactory caseast in it, the
adaptation is generated by a First t heuristic algorithm[2

53

CRATER architecture
Int Imt Int Int Int Int Int Int

2

Chapter 5: Implementation

s

L I

s

n
i

Lo
s

Figure 5.2: Knowledge Base Snippet
54

Chapter 5: Implementation Adaptation request

Figure[4.3 depicts this process as a ow chart.

5.1.2.2 Retain component

Retain is simply preserving a the new generated case in the knowledpse. Retain
component has access to the knowledge base to save the newscdsés obvious that
no duplication occurs in the knowledge base because the retain pss is limited only
for cases which are generated constructively after the condition is not satis ed in
the QAF.

5.2 Adaptation request

As described in Chapter’4 adaptation requests are managed syste states that
requites adaptation. In order to perform this in the experiment fothe robot system,
adaptation request are generated randomly. The generation press produces robot's
states that requires adaptation i.e. robot states with overall utiliy less than or equals
0.5. The generation process iterates the robots attributes and rdomly select a value
from its value spaces. After selecting a value for all attributes, thprocess estimates
the utility of the generated case and return it if its utility is zero. Otherwise the
process continues till nding a utility breaker case. The adaptatiomequest generator
component does also the functionality of monitor and decider as itcaecide whether
the robot's state violates its goals or not.

5.3 Monitoring

Monitoring functionality is implemented in the prototype by the adaptation request
generator. This is because the adaptation request generatoopides only robot states
with utility less than or equal UT e.g. less than zero. This functionalityis the same
thing as the monitoring process as monitoring will issue adaptation pcess when it
the robot state's utility is less than or equal0.5.

5.4 Main classes

Figure[5.3 illustrates the main classes and their interrelations used ihg implementa-
tion of CRATER's. | will describe abstractly these classes in the follawg paragraph:

55

Chapter 5: Implementation Development tools

RobotDataSheet: This class maintains the robot's value for each attribute. It
has also some methods for retrieving the values of attributes footh generating
the adaptation requests and adaptation generation.

RobotState: This class is a centric one. It keeps the robot's attributes as a set
of instances of clasfobotAttribute.

RobotAttribute: This class keeps the name, the value, the weigh and the type
of attributefd.

RobotUtiltiy: This class calculates the utility of the robot i.e. usindRobotState
object. Each utility is represented by the clas#JtilityFunction .

UtilityFunction: This class represents one utility of the robot. Each instance of
this class has name, value and weight.

Con guration: This class saves the values for CRATER e.g. , adaptation
requests number, utility threshold and some other values for theBR engine.

AdaptationController: This class is responsible for doing the adaptation process.
It uses the Quali edAdaptationFrame class for processing the retrieved cases
from the knowledge base andFirstFitHeuristic class which is responsible for
doing the constructive adaptation.

ReturnCaseObiject:This class is an extension of the clas®botState It is just a
RobotStatewith extra attribute for similarity value. This similarity is returned
form the retrieval process and is essential for the case expedigralculation.

Retain: This class is used byirstFitHeuristic class and is responsible for saving
the new generated cases in the knowledge base.

5.5 Development tools

| used Java Development Kit (JDK) [3] version 1.7 for developing thapplication.
The CBR implementation [2] is also a Java application. | also used NetBes IDE
[4] as development environment.

LAttribute types are described in Table 4.5

56

Chapter 5: Implementation Uncertainty

\ RobotAttribute

FohotDatasheet
_
FirstFitHeuristic

Configuration

A ReturnCase0hject

| RohotState

QualifiedAdaptationFrame |

[~daptationControlier

RobotUtility
| UtilityF unction

Figure 5.3: Main classes of CRATER

5.6 Uncertainty

As discussed in Chaptef]4 uncertainty is represented in robot's atbute values as

'?'. This uncertainty could be due to the unknown values or the absee of values at

all. Figureb.4 illustrates some basic classes used to realize uncertaifithese classes
contains:

UncertainStateGenerator: This class is responsible for randomly generating
robot states that contain some uncertain values with the help of cta Un-
certainRobotDataSheet This class representsincertainty-injector.

UncertainRobotState: This class depicts a robot state that has a uncertain
values. This class is centric one because it manipulates a list of statbat
represent possible states derived from the uncertain state. Ilrddition it has
the calculations for , and

UncertainCaseAnalyser: This class decompose the uncertain state into all
possible certain states for next steps processing and it is used Whetclass
UncertainRobotState

UncertainCraterController: This class is an extension of clagsdaptationCon-
troller described above. It provides the mechanism of adaptation in thegsence
of uncertainty.

57

Chapter 5: Implementation Summary

/I UncertainCraterContraller |

!

| Uncertainstate Generator K \|,
| X |

§| UncertainRobatState |

[UncertainRobotDatasheet | V

| UncertainCaseAnalyser |

Figure 5.4: Uncertainty handling classes

5.7 Summary

This chapter showed the prototypical implementation overview of RATER. This
chapter described also how every component of CRATER is implemedt The im-
plementation presented in this chapter included how the adaptationequests were
generated randomly. Development tools and class diagrams for timeplementation
were presented in the context of implementation explained in this cpger.

58

Chapter 6

Experiment and Results

This chapter is intended to provide the experimental evaluation asrpposed in the
research method in Section_1.2. This chapter provides informatiorbaut the vali-
dation and evaluation of CRATER in the light of the motivating example dscribed
in Section[4.1. This chapter starts with Sectio 611 that describes ¢hexperiment
settings and continues with Sectioi 612 that gives information abouhe derivation
process of the metrics used for the evaluation and validation prase Section 6.3
embraces the results obtained form the experiment with extensivgures and infor-
mation. This chapter ends with Sectiori €]4 that discuss the experimis internal
and external validly.

6.1 Experiment setup

The validation of CRATER is done in a binary validation paradigm. In orde to
validate CRATER, an experiment is conducted based on the motivatqm example
described in Sectioin’4]1 and implemented as explained in Chapiér 5. Tdxperiment
was performed under Windows 8 (x64) machine with 4 GB of RAM and QP Intel
CORE 2 Duo (P7750) 2.26 GHz.

6.1.1 Design decisions

CRATER requires some con guration that needed to be set befonsorking. These
design decisions include:

Utility threshold is 0.5. Choosing this value give the chance to show CRAR's
ability in providing adaptation with greater utility.

59

Chapter 6: Experiment and Results GQM-based metrics

is 90% unless otherwise stated. This value is suitable to show how CR2R
construct cases and retrieve them from the knowledge base in teperiment.

First t heuristic is used in the implementation of the prototype. This is the
provided implementation by the this prototypical implementation.

In the experiment, CRATER starts with empty knowledge base whiclenhances
the validation of the generative adaptation process.

is 85% unless otherwise stated.

6.1.2 Experiment nature

In order to perform the experiment, CRATER is subjected to sevesuccessive runs.
Each run contains 50 randomly generated adaptation requests agplained in Sec-
tion 6.2. Seven runs were selected because they provide all impattaesults and
after that the results have insigni cant e ects.

6.2 GQM-based metrics

This section provides the related quality metrics for CRATER in the cotext of the
motivating example described in Section 4.1. Adaptation-related mets are formu-
lated for evaluating CRATER based on GQM approach [39]. Goal-Quesh-Metric
[3€] is utilized in order to derive the related metrics for the validation prpose. In the
following subsections software quality metrics are elaborated foraduating CRATER.

6.2.1 Adaptation engine performance

Figure[6.1 shows the GQM sheet for identifying the performance CRER adaptation
engine. Two metrics are evolved and explained in the following subseas.

6.2.1.1 Adaptation remembrance

Remembrance implies making use of the previous performed adajpas instead of
constructing the adaptation response from scratch each time. his property has
a positive impacts on the performance of the adaptation engine. Rembrance is

60

Chapter 6: Experiment and Results GQM-based metrics

Purpose: - Improve
1 Issue: - The performance of
Object: - CRATER adaptation engine
Viewpoint: |- From the managed system view point
01 What is the number of remembered adaptation responses in
the knowledge base for future reuse?
Ma Adaptation remembrance
Q3 | What s the response time of the CRATER adaptation engine ?
M2 Adaptation response time

Figure 6.1: GQM Sheet for Adaptation Performance Goal

done using the knowledge base which contains the successful grened adaptations.
Adaptation remembrance can be estimated by the following equation

Adaptations retrived from KB

Adaptation remembrance= .
P # All Adaptations

(6.1)

6.2.1.2 Adaptation response time

The response time is traditional metric for performance evaluationin CRATER
the response time of the adaptation process is the elapsed time wetn receiving
adaptation request and providing the adaptation response. Theverage response
time for CRATER is estimated by the following equation:

" . Response Timégn)
All Adaptations

Average Response Time= (6.2)

6.2.2 Adaptation expediency

Figure[6.2 shows the GQM sheet for providing an expedient and e ci¢radaptation
response. | de ne expedient adaptation as the adaptation prose that successes
to rescue the managed system from undesirable states to desleabtates in order
to keep the keep the system goals satis ed including functional antbn functional

61

Chapter 6: Experiment and Results Results

Figure 6.2: GQM Sheet for Adaptation Expediency Goal

requirements. This is done by providing adaptation responses withtility greater
than the UT. Adaptation expediency is quanti ed by the following eqation:

Expedient Adaptations
All Adaptations

Adaptation Expediency = (6.3)

CRATER aims to provide an adaptation response with the highest peile utility. If
CRATER always provides an expedient adaptation response each grthen the adap-
tation expediency in Equation[6.8 equals one. However in some cades managed
system resources decrease overtime which a ects the quality dietservice provided
by other components. CRATER has nothing to do in this case as CRAIR has no
authority on the resources of the managed system. Instead CRER will provide
an adaptation response with the highest possible utility. For exampldne power unit
in the robot managed system described in Sectign 4.1 a ects the va@éransmission
unit. Thus the video transmission quality is governed by the availablegwer such
that if the available power is low then the video quality could not be verhigh. This
a ects the total utility of the robot and CRATER may not provide an adaptation
with utility greater than UT because CRATER can not increase the azilable power
in the robot and will only provide an adaptation response with the higést possible

utility.

6.3 Results

This sections provides extensive results from the experiment explad in Chapter[4
and implemented in Chapter.b. The following subsections contains imfoation re-
garding the response time and the expediency of adaptation.

62

Chapter 6: Experiment and Results Results

6.3.1 Examples of adaptation

Table 6.1 illustrates two randomly selected adaptation done by CRATE one of them
contains uncertain values. The rst adaptation request embrasea defect in the op-
erating mode of the robot as there is an obstacle while the robot sgkis high. The
adaptation response for this disordered state of the robot is t@educe the speed. Re-
ducing the speed is the only possible adaptation response as we cahahange the
obstacle to false as it is not adaptable attribute. The table also shaxwhat the utility
of the adaptation request is zero which is a utility breaker and CRATR managed
to provide an adaptation response with utility 0.892 which is greaterhian zero and
represents an accepted expedient adaptation response. Theestadaptation requests
holds uncertain value in the communication attribute. CRATER issuedadaptation
process for this robot state because the uncertain attributehé communication, is un-
certain and on possible values of it leads to zero utility. The value of monunication
attribute that causes zero utility is o which means that the robot isunable to estab-
lish connection with the remote centre. As a result CRATER issues aadaptation
process that produces the adaptation response that assurbatithe communication is
set with appropriate value enabling communication with the remote ctre. Needles
to say that the chosen value, UHF, should not break the utility of tle robot which
is satis ed and the utility is 0.8666. Another possible adaptation regmse for the
second adaptation request is to enable the data back up and set the communica-
tion. However CRATER did not chose this scenario because its utility iless than
the utility of the chosen adaptation response.

6.3.2 Response time results

In this section | will provide the obtained results related to respormstime of CRATER.
Figure 6.3 shows the average response time for seven successiveffCRATER start-
ing from empty knowledge base and each run has 50 adaptation regts. It is clear
that the average response time for any experiment is greater thahe subsequent
experiment. This is normal because most of adaptation requests time rst exper-
iment were generated not retrieved form the knowledge base whichempty. The
later experiments' average response time starts to decreasecdngse the adaptation
responses begun to be retrieved form the knowledge base whichstmnes less time
than constructing adaptation responses. The average respengne for experiment
seven is the smallest among all experiments as the knowledge baseabw more

63

Chapter 6: Experiment and Results

Results
Table 6.1: Adaptation Samples
Attribute Ad.Req.1 Ad.Res.1 Ad.Req.2 Ad.Res.2
Communication UHF UHF ? UHF
Power Mode || Saving Mode| Saving Mode| Medium Power | Medium Power
Power Indicator High High High High
Speed High Low Low Low
Video quality Very High Very High Low Low
Data Backup @] @] @] @]
Obstacles True True False False
Encryption Puer Perm. | Puer Perm. || Zig-Zag Permu.| Zig-Zag Permu.
Utility 0.484 0.892 ? 0.8666

Figure 6.3: Average Response Time

64

Chapter 6: Experiment and Results Results

su cient and mature for providing adaptation response. Howevesmall numbers of
adaptation responses could be constructed if the knowledge baais to provide the
required adaptation response.

6.3.2.1 value e ect on response time

Figure 6.4 shows the impact of the value of on the average response time. If the
value of is high e.g. 99% or 95% this means that small number of cases in the
knowledge base are selected in the quali ed adaptation frame whichats to more
constructively generated adaptation responses unlike small vatuef e.g. 85% or
80% which consider more cases from the knowledge base. This leadsore retrieved
adaptation responses from the knowledge base.

Figure 6.4: Average Response Time: Dierent values

6.3.2.2 Response time under uncertainty

Figure 6.5 shows the average response time for adaptation requegth uncertain
values with equals 85% as stated in the experiment setup along with extra values

65

Chapter 6: Experiment and Results Results

of . All of the 50 adaptation requests depicted in Figure 6.5 has uncarh values to
explain the e ects of uncertainty in the performance of CRATER. Al experiments in
this gure has the same value of which is 90%.

Figure 6.5: Average Response Time Under Uncertainty

Figure 6.5 shows that there is a slight increase in the average respertime and
it is more than what appears in Figure 6.3. This is normal because thelaptation
requests with uncertain values requires more processing and aisalg as discussed
in Chapter 4 to nd estimate and .

6.3.2.3 value e ect on response time

Figure 6.6 shows the e ect of on the performance. If CRATER is con gured with
high value of this leads to consider more uncertain adaptation requests. The $es
is the less the average response time is.

6.3.3 Adaptation remembrance

As explained in Chapter 4 the adaptation response can be retrievédm the knowl-
edge base or constructed if the knowledge base is not mature eglouo provide
the required adaptation. The remembrance measure nds the re¢ian between the
retrieved adaptation from the knowledge base and the total nungls of adaptations.

66

Chapter 6: Experiment and Results Results

Figure 6.6: Average Response Time Under Uncertainty: Di erent values

Figure 6.7 shows the remembrance of adaptation responses faegsesuccessive exper-
iments starting form empty knowledge base. In experiment numbene the number
of constructed adaptation responses is more than the retrievedhich is logical as the
knowledge base is empty. In later experiments the number of retvied adaptation
began to increase while the number of constructed adaptation pmnses began to
decrease. This provides a positive impacts on the performance bétCRATER.

a ects the number of construed adaptation responses. To thand Figure 6.8
shows how a ects the number of constructed adaptation responses for\an suc-
cessive experiments each of them has 50 adaptation responsetisig from empty
knowledge base. It is clear from that gure that the more value is the more con-
structed adaptation responses are. This means that choosingetlvalue of a ects
the performance of CRATER however it is still a design time decision.

6.3.4 Adaptation expediency

Adaptation accuracy is estimated by the adaptation expediency.igure 6.9 shows the
minimum, the average and the maximum adaptation expediency forvan successive
experiments each of them has 50 adaptation responses startingnfi empty knowledge
base. It is clear that CRATER succeeded in providing an expedient agtation each

67

Chapter 6: Experiment and Results Results

Figure 6.7: Adaptation Response Remembrance

Figure 6.8: E ect on the Adaptation Process

68

Chapter 6: Experiment and Results Results

time with di erent expediency value depending on the nature of addption request
itself.

Figure 6.9: Adaptation Expediency

Figure 6.10 also shows the expediency of the adaptation processddaptation
requests all of them contains uncertain values. The gure explainthat CRATER is
in a position to work under uncertain situation and provide an e ecienadaptation
in terms of adaptation expediency.

6.3.5 Results discussion and research evidence

The primary goal of this thesis is to construct an adaptation engintor self-adaptive
software systems which is accompanied with a research evidencene Tesearch ev-
idence for this thesis is to provide arempirically evaluated evidenceegarding the
goals of CRATER. In order to realize this evidence, a binary validatioparadigm of
the experiment is used to validateaCRATER's testable goals.

As described in Section 1.1 and in the GQM sheets in Figure 6.1 and Fig@e, the
goals of this experiment are:

1. G1: Enhance the performance of the adaptation process by remeamge. The
success criteria used to binary-validate this goal is to test if CRATE managed

69

Chapter 6: Experiment and Results Results

Figure 6.10: Adaptation Expediency Under Uncertainty

to retain a successful adaptation for later reuse and how this reel a ects the
performance of CRATER.

2. G2: Provide an e ective mechanism for handling uncertainty. The success
criteria used to binary-validate this goal is to test if CRATER managd to
provide an expedient adaptation response under prede ned leva uncertainty

In the following paragraphs, empirical evidences for validating thef@ementioned
testable goals will be presented. These evidences are build upon tthsults presented
in Section 6.3.

The remembrance rate of the cases as shown in Figure 6.7 increasestime
which enables CRATER to reuse cases stored in the knowledge baskis was clear
from that gure as the average returned cases from the knowlgd base i216.85 cases
versus construction rate 0f3.15 cases out of 50 case. This result means that, in the
conducted experiment, CRATER provides 93.7% of its adaptation sponses from the
knowledge base and the rest of the adaptation responses which.B% were generated
constructively. This of-course a ects the performance of CRAER as constructing
new adaptation responses consumes more time than retrieving ibfin the knowledge
base. The response time of CRATER decreases from (5.02 ms) in trs¢ run of the

70

Chapter 6: Experiment and Results Experiment validity

experiment to (1.01 ms) in the last run of the experiment. The avege response time
of CRATER for the performed seven runs of the experiment is (2.27ms) based on
Figure 6.3.

The uncertainty handling in CRATER is tested by identifying the adaptation ex-
pediency. Based on results shown in Figure 6.10, the average adsioin expediency
of the performed runs of the experiment i9.834 which represents an e cient adap-
tation under uncertainty knowing that the utility threshold is 0.5 and the maximum
utility of the managed system is 1.0. Under these information CRATERnanaged to
provide an expedient adaptation for all adaptation requests as a¥wn in Figure 6.10.

6.3.6 Results conclusion

After the previous detailed results it is obvious that CRATER provids the adapta-
tion mechanism in accepted manner in terms of (1) Response Time (Rdaptation
space utilization (by remembrance) and (3) Uncertainty diminution wth the following
constructive aspects:

Developers need not to explicitly provide prede ned system's ideabperation
states and con gurations. Instead, modelling utility functions forsystem's goal
is enough for CRATER to operate and provide the results shown in ¢éhprevious
sections. CRATER is able to operate even there is no cases in the Whedge
base. However, the developer can provide a starter cases witte thelp of the
domain expert.

CRATER provides an e ective mechanism to overcome the problem tig op-
erating states. CRATER memorizes the previously adapted scemas for later
using which has a positive impacts on performance.

CRATER can operate under uncertainty that hinders the adaptabn process.
This represents a strong point over traditional solutions.

In the next section | will provide some threats that could a ect theresults and
my conclusion.

6.4 Experiment validity

In this section | provide the threats to experiment external and iternal validity.

71

Chapter 6: Experiment and Results Summary

6.4.1 Internal validity

The threats to internal validity in the experiment include:

In reality the adaptation requests will be sent directly from the moitoring com-
ponent during the monitoring process of the managed system toeladaptation
engine. In the experiment conducted in this thesis the adaptationequests
were generated randomly to represent a diversity of adaptatiorequests. The
randomness of generation was guaranteed by the pure randonfesgon of at-
tribute values in the implemented adaptation request generator agponent of
the prototypical implementation of CRATER.

Another threat to internal validity could be the implementation of CBR engine.
Di erent CBR implementation could provide slightly di erent results particu-
larity in terms of response time even though the chosen CBR implentation [2]
shows acceptable performance.

6.4.2 External validity

The generalization of my results could be a ected by the chosen dain such that if
CRATER is utilized in a di erent domain other than robotics. This could be gured
out if | utilize CRATER in a di erent domain however | expect no major di erences
in the results.

6.5 Summary

This chapter presented details about the experiment, results anevaluation. This
chapter presented also the GQM quality metrics used to evaluate @GRER. The
experiment setup and the results of the experiment were describan details in this
chapter. A validation and empirical evidence were introduced to valate CRATER.
This chapter concluded with the experiment validity.

72

Chapter 7

Conclusions

Within this master thesis | presented CRATER, a framework for costructing an
adaptation engine for self-adaptive software systems, which he@me advantages over
the existing solutions. The main contribution in this thesis was to prade an e cient
adaptation mechanism that considers the number of possible adafibns along with
uncertainty handling.

Before providing the information regarding how CRATER works | preided some ba-
sic information for the reader to understand the context of thehesis. After that | pro-
vided the related work to this thesis then started explain the idea @RATER and how
it works. After that | conducted an experiment to evaluate and vadate CRATER's
performance investigating its outcomes. The main challenges thaRBTER managed
to overcome were:

1. The mechanism of remembrance of the previous successful@daons by stor-
ing them in the knowledge base for later reuse which reduces the timeguired
to provide the adaptation response. This saved CRATER from dointhe same
computation if it receives the same adaptation request more thame time.

2. Handling uncertainty that appear in the adaptation process thiahinders the
adaptation process and leads to unrealistic adaptations. The expaent showed
that CRATER is able to perform adaptation process under unceriaty.

3. The previously two challenges has been solved with a noticeableeqted per-
formance in term of adaptation engine response time.

This thesis was supported with an empirical evaluation evidence debed in Chap-
ter 6. This empirical evaluation and evidence of CRATER bestows a ustworthy

73

Chapter 7: Conclusions CRATER merits and limitations

approach for realizing self-adaptive software systems.

7.1 CRATER merits and limitations

The idea behind CRATER is founded based on two connected realitiesOn one
hand the self-adaptivity property is realized in software systemsybemulating the
closed autonomic control loop rstly proposed in [15]. This emulatiorguarantees
the automaticity of the system. On the other hand Case-Based Reoning (CBR) life
cycle, which was explained in Section 2.3.2, ts well for this emulationnlithis section
| will conclude, in the light of results in Chapter 6, with the merits and limtations

of CRATER. The merits of CRATER includes:

7.1.1 CRATER merits

Operating space: CRATER provides an e ective mechanism to overcome the
problem of big operating states. Firstly and thanks to CBR the exignce of
knowledge base represents a basic advantage for saving the lopgrating states
of the managed system. These saved states, as cases in the lkeuye base, can
be exploited and reused during system runtime. These cases sathes time

used to generate the adaptation response each time by learningwneases.
Moreover integrating the utility functions provides an advantageos solution

for representing the system goals and due to them the generatipgocess of
adaptation request becomes more directed and faster to keepetknowledge
base preserving only the cases with utility greater than UT. Hencensuring

that the retrieval process returns only e cient cases from the kowledge base.

Managed system changesAs being an external adaptation engine, CRATER
is helpful in case of having legacy system that needed to become-adtiptive.
This is because the changes required to be performed in integratiGRATER
with legacy system is relatively small and is limited to providing some intéaces
for both monitoring and executing components.

Adaptation response sourceCRATER provides dynamic adaptation responses
because of the adaptation process discussed in Section 4.4.3 armmvshin Fig-
ure 4.2 provides a learning mechanism. This contributes not only in gemating

74

Chapter 7: Conclusions CRATER merits and limitations

new solutions if the existing ones are not su cient but also saving tha for
later reuse.

Adaptation process initiation: Even though CRATER adopts the reactive adap-
tation style, it can be extended easily to support proactive adapten. The
Observer and Decidecomponent in Figure 4.2 can be elaborated to provide a
proactive mechanism. CRATER's components function separatelyxactly like
what adaptation process suggests. Each component has its owmdtionality
which enables future extension.

Autonomy vs Human intervention. CRATER manages to start from empty
knowledge base and operates without human inference which is arnvatage.
However this do not hinders the domain expert to de ne and re nehe knowl-
edge base contents. The Human-In-The-Loop principle can easilg lapplied
in CRATER as a result of having the persisted knowledge base that mae
changed at any time.

Uncertainty handling: CRATER handles uncertainty which is one of the most
decisive challenges in the self-adaptive software system eld. Thangarity
measures that are the basic of CBR plays an important role in diminutio of
uncertainty and reduce its e ects on the adaptation process pacularity for
unknown and missing values.

7.1.2 CRATER limitations

CRATER could su er if the target managed system's adaptation releed attributes do
not have a predicted possible values. CRATER's mechanism is built up@de ned
set of attributes values. Also the prototypical implementation maybe improved to
provide better performance particularly if the CBR implementation [2is substituted
with another one with di erent representation of the knowledge bse to enable some
methods of cashing instead of reading the whole knowledge basergvene. The
experiment used to validate CRATER used 8 attributes for the robtosystem. A
problem could be raised if the managed system has more attributegiwmore possible
values. This could a ect the performance of CRATER. In this caserao ine indexing
for the knowledge base can be performed to enhance the perfanoe of the retrieval
process.

75

Chapter 7: Conclusions Prospective and vision

7.2 Prospective and vision

Applying CRATER on di erent case studies will provide an good indicatio regarding
the applicability of it. It would be good if CRATER is applied in di erent dom ain
e.g. information system domain applications, in order to deeply invegate its appli-
cability. The next step is to prepare two publications the rst will be ébout CRATER
and the second about how the utility functions are utilized in case-lsad reasoning
and applied in the CBR life cycle. Then nding a corresponding softwarengineering
conference and case-based reasoning conference to subminthe

76

Bibliography

[1] An architectural blueprint for autonomic computing.
http://www-03.ibm.com/autonomic/pdfs/ACBlueprintWhi tePaperV7.pdf/ .

[2] Freecbr enginehttp://freecbr.sourceforge.net/
[3] Java development kit.www.oracle.com/technetwork/java/javase/
[4] Netbeans ide.http://netbeans.org/

[5] A. Aamodt and E. Plaza. Case-based reasoning; foundationaugs, methodolog-
ical variations, and system approachesAl COMMUNICATIONS , 7(1):39{59,
1994.

[6] D. W. Aha. Case-based learning algorithms, 1991.

[7] S. Aksoy and R. M. Haralick. Probabilistic vs. geometric similarity masures for
image retrieval. INIEEE Conf. Computer Vision and Pattern Recognition 2000.

[8] R. Asadollahi, M. Salehie, and L. Tahvildari. Starmx: A frameworkdr develop-
ing self-managing java-based systems. pages 58 {67, 2009.

[9] G. Bertolotti, A. Cristiani, R. Lombardi, M. Ribaric and, N. Tomas andevic
and, and M. Stanojevic and. Self-adaptive prototype for seat agtion. In Self-
Adaptive and Self-Organizing Systems Workshop (SASOW), ZDFourth IEEE
International Conference on pages 136 {141, 2010.

[10] B. Bontchev, D. Vassileva, B. Chavkova, and V. Mitev. Architetural design
of a software engine for adaptation control in the adopta e-leairg platform.
In Proceedings of the International Conference on Computer &gms and Tech-
nologies and Workshop for PhD Students in ComputinGompSysTech '09, pages
24:1{24:6. ACM, 20009.

1

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[11] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandla. Qos-
driven runtime adaptation of service oriented architectures. IrProceedings of
the the 7th joint meeting of the European software engineeg conference and
the ACM SIGSOFT symposium on The foundations of software dngering,
ESEC/FSE '09, pages 131{140. ACM, 2009.

[12] S.-W. Cheng and D. Garlan. Handling uncertainty in autonomic sysms, 2007.

[13] S.-W. Cheng, D. Garlan, and B. Schmerl. Architecture-basecl&adaptation
in the presence of multiple objectives. IProceedings of the 2006 international
workshop on Self-adaptation and self-managing systei8&AMS '06, pages 2{8.
ACM, 2006.

[14] M. Derakhshanmanesh, M. Amoui, G. O'Grady, J. Ebert, and LTahvildari.
Graf: graph-based runtime adaptation framework. IrProceedings of the 6th In-
ternational Symposium on Software Engineering for Adaptvand Self-Managing
Systems SEAMS '11, pages 128{137, 2011.

[15] S. Dobson, S. Denazis, A. Ferrandez, D. Gadi, E. Gelenbe, Massacci, P. Nixon,
F. Sare, N. Schmidt, and F. Zambonelli. A survey of autonomic comomica-
tions. 2006.

[16] A. Elkhodary, N. Esfahani, and S. Malek. Fusion: a frameworloif engineering
self-tuning self-adaptive software systems. IRroceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of softwarengineering FSE
10, pages 7{16, 2010.

[17] N. Esfahani, E. Kouroshfar, and S. Malek. Taming uncertaintyn self-adaptive
software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineegirESEC/FSE '11,
pages 234{244, 2011.

[18] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steaste. Rainbow:
architecture-based self-adaptation with reusable infrastructe. pages 46 { 54,
2004.

[19] P. Guo, Q. Bao, and Q. Yin. Probabilistic similarity measures analysfor remote
sensing image retrieval Machine Learning and Cybernetics, 2006 International
Conference 2006.

78

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[20] M.-H. Karray, C. Ghedira, and Z. Maamar. Towards a self-healinapproach to
sustain web services reliability. INAINA Workshops'11, pages 267{272, 2011.

[21] N. Khakpour, R. Khosravi, M. Sirjani, and S. Jalili. Formal analys of policy-
based self-adaptive systems. [Rroceedings of the 2010 ACM Symposium on
Applied Computing SAC '10, pages 2536{2543. ACM, 2010.

[22] D. Kim and S. Park. Reinforcement learning-based dynamic adagion planning
method for architecture-based self-managed software. 8oftware Engineering
for Adaptive and Self-Managing Systems, 2009. SEAMS '09. $E Workshop
on, pages 76 {85, 2009.

[23] H. Liu, M. Parashar, and S. Member. Accord: A programming &mework for
autonomic applications. IEEE Transactions on Systems, Man and Cybernetics,
Special Issue on Engineering Autonomic Systems, Editors:. Sterritt and T.
Bapty, IEEE Press 36:341{352, 2006.

[24] D. McSherry. Diversity-conscious retrieval. IrProceedings of the 6th European
Conference on Advances in Case-Based ReasoniiCCBR '02, pages 219{233.
Springer-Verlag, 2002.

[25] D. A. Menase, J. M. Ewing, H. Gomaa, S. Malex, and J. a. P. 8ea. A
framework for utility-based service oriented design in sassy. Rroceedings of the
rst joint WOSP/SIPEW international conference on Perform ance engineering
WOSP/SIPEW '10, pages 27{36. ACM, 2010.

[26] A. Metzger. Towards accurate failure prediction for the pradive adaptation of
service-oriented systems. IfProceedings of the 8th workshop on Assurances for
self-adaptive systemsASAS '11, pages 18{23. ACM, 2011.

[27] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. SolbergModels@
run.time to support dynamic adaptation. Computer, pages 44 {51, 20009.

[28] N. C. Narendra and U. Bellur. A middleware for adaptive servicerientation
in pervasive computing environments. InProceedings of the 5th International
Workshop on Middleware for Service Oriented Computing/W4SOC '10, pages
19{26, 2010.

[29] V. Pareto. Cours d'economie politiqueF. Rouge, Lausanng1896.

79

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[30] E. Plaza and J. L. Arcos. Constructive adaptation. InProceedings of the 6th
European Conference on Advances in Case-Based ReasoniBGCBR '02, pages
306{320, 2002.

[31] M. Richter and A. AAmodt. Case-based reasoning foundatiotise knowledge
engineering reviewThe Knowledge Engineering Review, Vol. 20:3, 2032@006.

[32] M. M. Richter and S. Wess. Similarity, uncertainty and case-bad reasoning in
patdex.

[33] M. Salehie and L. Tahvildari. A quality-driven approach to enable etision-
making in self-adaptive software. InSoftware Engineering - Companion, 2007.
ICSE 2007 Companion. 29th International Conference grmpages 103 {104, may
2007.

[34] M. Salehie and L. Tahvildari. Self-adaptive software: Landscapand research
challenges.ACM Transactions on Autonomous and Adaptive Systems (TAAS)
2009.

[35] M. A. S. Sallem and F. J. da Silva e Silva. Adapta: a framework forydamic
recon guration of distributed applications. In Proceedings of the 5th workshop
on Adaptive and re ective middleware (ARM '06) ARM '06, 2006.

[36] J. W. Schaaf. Fish and shrink. a next step towards e cient casretrieval in large
scaled case bases, 1996.

[37] A. Stahl. Learning similarity measures: A formal view based on ageralized
cbr model. pages 507{521. Springer, 2005.

[38] A. Sthal. Learning of Knowledge-Intensive Similarity Measures in Gae-Based
Reasoning PhD thesis, 2003.

[39] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach. Goal gstion
metric (ggm) approach. InEncyclopedia of Software Engineeringlohn Wiley
and Sons, Inc., 2002.

[40] T. Vogel and H. Giese. Adaptation and abstract runtime modeldn Proceedings
of the 2010 ICSE Workshop on Software Engineering for Adap# and Self-
Managing SystemsSEAMS '10, pages 39{48, New York, NY, USA, 2010.

80

Chapter 7: BIBLIOGRAPHY BIBLIOGRAPHY

[41] W. Walker, P. Harremoes, J. Rotmans, J. Van der Sluijs, M. VarAsselt,
P. Janssen, and M. Krayer Von Krauss. De ning uncertainty: a aaceptual
basis for uncertainty management in model-based decision suppothtegrated
Assessment2003.

[42] S. Wess, K. dieter Altho, and G. Derwand. Using k-d trees to iprove the
retrieval step in case-based reasoning. pages 167{181. Spningelag, 1993.

[43] W. Wilke and R. Bergmann. Techniques and knowledge used foragdation
during case-based problem solving, 1998.

[44] Y. Wu, Y. Wu, X. Peng, and W. Zhao. Implementing self-adaptivesoftware
architecture by re ective component model and dynamic aop: A c& study. In
QSIC'10, pages 288{293, 2010.

[45] Q. Yang, J. Lu, J. Li, X. Ma, W. Song, and Y. Zou. Toward a fuzy control-based
approach to design of self-adaptive software. IRroceedings of the Second Asia-
Paci ¢ Symposium on Internetware Internetware '10, pages 15:1{15:4, 2010.

[46] H. Ziv, D. J. Richardson, and R. Kisch. The uncertainty principlen software
engineering, 1996.

81

	Abstract
	Acknowledgements
	Declaration
	List of Tables
	List of Figures
	Algorithms
	Introduction
	Goals and contributions of this thesis
	Research method
	Terms definition
	Thesis outline

	Preliminaries
	Self-adaptive software systems
	Adaptation classifications

	Uncertainty
	Uncertainty in software engineering
	Uncertainty in self-adaptive software systems

	Case-based Reasoning
	CBR overview
	CBR life cycle (RE)4
	Similarity measures
	Case retrieval
	Case adaptation
	Learning in CBR

	Summary

	State of The Art
	Related work selection criteria
	Related work
	Learning based adaptation
	Architecture and model based adaptation
	Middleware based adaptation
	Fuzzy control based adaptation
	Programming framework based adaptation

	Discussion
	Problem statement
	Summary

	Proposed Solution
	Motivating example
	Robot system
	Robot goals
	Quality-related requirements
	Functioning requirements

	CBR knowledge base
	Managed system attributes
	Attribute types
	Attribute weight

	CBR as adaptation engine
	Adaptation request
	Adaptation response
	Adaptation process
	Analysing adaptation request
	Case retrieval
	Constructing QAF
	Generate adaptation response
	Retain

	Utility function
	Utility function importance
	Utility function definition
	Utility function weight
	Overall utility function
	Utility function examples

	Uncertainty diminution in CRATER
	Uncertainty handling
	CRATER's uncertainty location
	CRATER's uncertainty level
	Adaptation request uncertainty
	Uncertainty in qualified adaptation frame

	Summary

	Implementation
	CRATER architecture
	Knowledge base modelling
	CBR engine
	Adapt/Reuse component
	Retain component

	Adaptation request
	Monitoring
	Main classes
	Development tools
	Uncertainty
	Summary

	Experiment and Results
	Experiment setup
	Design decisions
	Experiment nature

	GQM-based metrics
	Adaptation engine performance
	Adaptation remembrance
	Adaptation response time

	Adaptation expediency

	Results
	Examples of adaptation
	Response time results
	 value effect on response time
	Response time under uncertainty
	 value effect on response time

	Adaptation remembrance
	Adaptation expediency
	Results discussion and research evidence
	Results conclusion

	Experiment validity
	Internal validity
	External validity

	Summary

	Conclusions
	CRATER merits and limitations
	CRATER merits
	CRATER limitations

	Prospective and vision

