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ABSTRACT 

Self-adaptivity allows software systems to autonomously adjust their behavior during run-time to reduce 

the cost complexities caused by manual maintenance. In this paper, a framework for building an external 

adaptation engine for self-adaptive software systems is proposed. In order to improve the quality of self-

adaptive software systems, this research addresses two challenges in self-adaptive software systems. The 

first challenge is to provide better performance of the adaptation engine by managing the complexity of 

the adaptation space efficiently and the second challenge is handling run-time uncertainty that hinders the 

adaptation process. This research utilizes Case-based Reasoning as an adaptation engine along with utility 

functions for realizing the managed system’s requirements. 
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1. INTRODUCTION 

The majority of the existing work in the literature agrees [1] [2] that self-adaptivity in software 

systems is the ability of a software system to adjust its behaviour during run time to handle 

software system's complexity and maintenance costs [3] while preserving the requirement of the 

system. This property dictates the presence of an adaptation mechanism in order to build the 

logic of self-adaptivity without human intervention. Developing a self-adaptive software system 

is subjected to many challenges like handling the complexity of the adaptation space of the 

managed system. This complexity is conceived when the number of the states that the managed 

system can run in is relatively large. Also, this complexity manifests itself when new states are 

needed to be inferred from previous one i.e. learning from past experience. Another challenge is 

the uncertainty that hinders the adaption process during run-time. This paper will address these 

challenges. More precisely, our framework is concerned with the following problems: 

 Run-time uncertainty handling: Uncertainty is a challenge that exists not only in self-

adaptive software systems but also in the entire software engineering field on different 

levels. Therefore managing uncertainty is an essential issue in constructing a self-

adaptive software system as uncertainty hinders the adaptation process if it is not 

handled and diminished. 

 Adaptation space: The adaptation process raises a performance challenge if the 

adaptation space is relatively large, particularly when new adaptations are required to be 

inferred. This challenge requires an efficient mechanism that guarantees learning new 

adaptations as well as providing the adaptation with satisfactory performance. This 

means that the adaptation engine's response should be provided as soon as an adaptation 

is issued since late adaptations provided by the adaptation engine could be futile. 
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The rest of this paper is structured as follows: Section 2 lists the related work and the existing 

gabs in the literature. Section 3 shows a motivating example the will be used as a running 

example throughout this paper. In Section 4 we will demonstrate an overview of our solution 

while in Section 5 detailed information will be provided. Section 6 and 7contains the progress 

and the future of our research, in particular the evaluation. This paper concludes in Section 8. 

2. RELATED WORK 

The body of literature in the area of self-adaptivity has provided a plethora of frameworks, 

approaches and techniques to enhance self-adaptivity that is widespread in many fields. This 

section contains the related work to our research which has been introduced earlier as a short 

paper in [37]. In the following sections, we will present the related work categorized according 

to the mechanisms used to support self-adaptivity. 

2.1 Learning based adaptation 

Salehie and Tahvildari [2] proposed a framework for realizing the deciding process performed 

by an external adaptation engine. They used knowledge base to capture the managed system's 

information namely domain information, goals and utility information. This is used in the 

decision-making algorithm, as they name it, which is responsible for providing the adaptation 

decision. In [4], Kim and Park provided a reinforcement learning-based approach for 

architecture-based self-managed software using both on-line and off-line learning. FUSION [5] 

was proposed by Elkhodary et al. [5] to solve the problem of foreseeing the changes in 

environment, which hinders the adaptation during run time for feature-based systems using a 

machine learning technique. In [6], Mohamed-Hedi et al. provided a self-healing approach to 

enhance the reliability of web services. A simple experiment was used to validate their approach 

without empirical evidence. 

2.2 Architecture & model based adaptation 

RAINBOW [7] is a famous contribution in the area of self-adaptation based on architectural 

infrastructures reuse. RAINBOW monitors the managed system using abstract architectural 

models to detect any constraints violation. GRAF [8] was proposed for engineering self-

adaptive software systems. The communication between the managed system and GRAF 

framework is carried out via interfaces. This approach has a performance overhead because 

GRAF reproduces a new adaptable version of the managed system. Similar to GRAF [8] Vogel 

and Giese [9] assumed that adaptation can be performed in two ways, parameter adaptation and 

structural adaptation. They provided three steps to resolve structural adaptation and used a self-

healing web application as an example. Morin et al. [10] presented an architectural based 

approach for realizing software adaptivity using model-driven and aspect oriented techniques. 

The aim of this approach was to reduce the complexities of the system by providing 

architectural adaptation based solution. They provided model-oriented architectures and aspect 

models for feature designing and selection. Khakpour et al. [11] provided PobSAM, a model-

based approach that is used to monitor, control and adapt the system behaviour using LTL to 

check the correctness of adaptation. Asadollahi et al. [12] presented StarMX framework for 

realizing self-management for Java-based applications. In their work they provided so called 

autonomic manager, which is an adaptation engine that encapsulates the adaptation logic. 

Adaptation logic was implemented by arbitrary policy-rule language. StarMX uses JMX and 

policy engines to enable self-management. Policies were used to represent the adaptation 

behaviour. This framework is restricted to Java-based application as the definition of processes 

is carried out by implementing certain Java interfaces in the policy manager. They evaluated 

their framework against some quality attribute. However, their evaluation for quality attributes 

was not quantified quantitatively. The work in [13] provided a new formal language for 

representing self-adaptivity for architecture-based self-adaptation. This language was used as an 



extension of the RAINBOW framework [7]. This work explains the use of this new language 

using an adaptation selection example that incorporates some stakeholders' interests in the 

selection process of the provided service which represents the adaptive service. Bontchev et al. 

[14] provides a software engine for adaptable process controlling and adaptable web-based 

delivered content. Their work reuses the functionality of the existing component in order to 

realize self-adaptivity in architecture-based systems. This work contains only the proposed 

solution and the implementation without experiment and evaluation. 

2.3 Middleware based adaptation  

In [15], a prototype for seat adaptation was provided. This prototype uses a middleware to 

support an adaptive behaviour. This approach was restricted to the seat adaptation which is 

controlled by a software system. Adapta framework [16] was presented as a middleware that 

enabled self-adaptivity for components in distributed applications. The monitoring service in 

Adapta monitored both hardware and software changes. 

2.4 Fuzzy control based adaptation 

Yang et al. [17] proposed a fuzzy-based self-adaptive software framework. The framework has 

three layers: (1) Adaptation logic layer, (2) Adaptable system layer, which is the managed 

system and (3) Software Bus. The adaptation logic layer represents the adaptation engine that 

includes the fuzzy rule-base, fuzzification and de-fuzzification components. This framework has 

a set of design steps in order to implement the adaptation. POISED [18] introduced a 

probabilistic approach for handling uncertainty in self-adaptive software systems by providing 

positive and negative impacts of uncertainty. An evaluation experiment had been applied which 

showed that POISED provided an accepted adaptation decision under uncertainty. The 

limitations of this approach are that it handles only internal uncertainty and does not memorize 

and utilize previous adaptation decisions.  

2.5 Programming framework based adaptation 

Narebdra et al. [19] proposed programming model and run time architecture for implementing 

adaptive service oriented. It was done via a middleware that solves the problem of static binding 

of services. The adaptation space in this work is limited to three situations that require 

adaptation of services. MOSES approach was proposed in the work [20] to provide self-

adaptivity for SOA systems. The authors used linear programming problem for formulating and 

solving the adaptivity problem as a model-based framework. MOSES aimed to improve the 

QoS for SOA, and the work in [20] provides a numerical experiment to test their approach. 

QoSMOS [21] provided a tool-supported framework to improve the QoS for the service based 

systems in adaptive and predictive manner. The work in [22] provided an implementation of 

architecture-based self-adaptive software using aspect oriented programming. They used a web-

based system as an experiment to test their implementation. Their experiment showed that the 

response time of the self-adaptive implementation is better than the original implementation 

without a self-adaptivity mechanism. Liu and Parashar [23] provided Accord, which is a 

programming framework that facilitates realizing self-adaptivity in self-managed applications. 

The usage of this framework was illustrated using forest fire management application. 

Table 1, which is similar to what proposed in [24], summarizes the related work done in this 

research. The table has two aspects of comparison (1) Research aspects and (2) Self-adaptivity 

aspect. The earlier aspect is important and represents an indication regarding the maturity and 

creditability of the research. The later aspect is related to the topic of this paper. 



Covered 
literature 

categorization 

Work 

Research aspects Self-adaptive software system aspects 

Problem 
Statement 

Contribution 
statement 

Experiment 
evaluation 

metrics 
Limitations 

Threats 
to 

validity 

Adaptation 
Expediency 

Adaptation 
remembrance 

Uncertainty 
Handling 

Adaptation 
Res. Time 

Adaptation 
style 

Adaptation 
engine 

Learning 
 based  

adaptation 

[2] √ √ X X X X X √ X X Dynamic External 

[4] √ √ √ X X X √ X X X Dynamic External 

[5] √ √ √ √ √ X √ √ X √ Dynamic External 

[6] X X √ X X X X X X X Dynamic External 

Architecture &  
model based 
adaptation 

[7] √ √ √ √ X X X X √ √ Dynamic External 

[8] √ √ √ √ X √ X X X X Dynamic External 

[9] √ √ √ X X X X X X X Static Internal 

[12] X X √ X X X √ X X X Dynamic External 

[10] X X √ √ X X √ X X √ Dynamic External 

[11] √ √ X X X X X X X X Dynamic Internal 

[13] √ √ √ X X X X X X X Static External 

[14] √ √ X X X X X √ X X Dynamic External 

Middleware based 
adaptation 

[15] √ √ √ X X X √ X X X Static Internal 

[16] √ √ X X X X X X X X Dynamic External 

Fuzzy control based 
adaptation 

[17] √ √ X X X X X X X X Dynamic External 

[18] √ √ √ √ X X √ X √ √ Dynamic Internal 

Programming 
framework based 

adaptation 

[19] X X √ √ X X X X X X Dynamic External 

[20] √ √ √ X X X √ X X X Dynamic External 

[22] √ √ √ √ X X √ X X √ Dynamic Internal 

[23] √ √ √ X X X √ X X √ Dynamic Internal 

Table 1: Summary of related work



3. MOTIVATING EXAMPLE 

The motivating example is a software system controlling a robot that requires self-adaptive 

behaviour during run-time. This motivating example is used for both motivating the need for 

self-adaptive software systems and for the experimentation and the validation of our framework. 

The idea of the robot is derived from [18] with an attribute extension for a more variety of 

configurations. Figure 1 shows an abstract view of the robot managed system which has an 

exploratory task and should submit the captured videos to a remote controlling centre. Even 

though the example is from the robotics field, we emphasize that our concern is only the 

software system that manages the self-adaptive behaviour of the robot rather than the robot 

itself. This means that the robot as a managed system could be any other system that requires 

enabling the self-adaptation property. We will use this example as a running example through 

this paper. 

 
Figure 1: Robot Components 

  

 The components in Figure 1 are dependent on each other; one component may affect other 

component(s). This dependency contributes to providing a set of various possible states of the 

robot, which is useful in explaining how our framework works. The robot requires adaptation of 

its behaviour during run-time in order to keep fulfilling its requirements without manual 

controlling from the remote controlling centre. This adaptation is a response to the changes in 

the environment where the robot is working and/or the changes in the attributes of the robot 

itself e.g. the speed and the power. These requirements are quality of service (QoS) 

requirements and functionality requirements that need to be achieved by the robot self-

adaptively.  

An example of QoS requirements is Video Quality where the robot aims at keeping the quality 

of the transmitted video as good as possible. This is done by selecting the appropriate video 

quality automatically during run-time. The available power affects this requirement because 

higher video qualities require more power consumption than lower ones. The robot should 

control this process efficiently. Another example of QoS requirements is Transmission Security 

where the robot should keep the transmitted data as secure as possible during submitting it to 

the remote controlling centre. This is achieved by selecting one among a set of encryption 

techniques where each technique has its advantages and drawbacks in terms of power 

consumption, security level, and encryption performance. An example of functionality 

requirements is Robot Fitness where the robot should manage the relations among its 

attributes in order to keep itself as fit as possible. For instance, the robot should reduce 



its speed if the power is not sufficient or an obstacle is detected by the sensors unit. 

Another example of functionality requirements is to enable the data backup if the 

communication with the remote centre is lost. This requires choosing a suitable video 

quality due to the limitation of the space of backup storage.  

The challenges that the robot system may face in the self-adaptation context and are 

addressed by our framework automatically are: 

 Run-time uncertainty handling: The robot may fail to identify one of its 

environmental variable values during its operation. For example the sensors may 

fail to tell whether there is an obstacle in the area or not. In such problematic 

situations, the robot should behave tolerably; otherwise the robot may run into 

unwanted states. 

 Adaptation space complexity impacts: If the robot has N attributes each of them 

has M different possible values, then the possible states S that the robot may run 

in are: ∏    
    This requires an efficient handling of these operating states that 

guarantees accepted performance. Concretely, the response time of the 

adaptation engine is a crucial issue because the delayed adaptation response 

could be useless. For example, if the robot's communication with the remote 

centre has been lost, then the robot should start the back-up storage in order to 

keep all the captured videos. Such decisions should be provided to the robot 

immediately; otherwise the robot could deviate from its requirements.  

 

4.  SOLUTION OVERVIEW 

In this section, an overview of the solution will be presented. Based on Figure 2, which 

illustrates framework reference model, the following subsections describe the Managed 

system and adaptation engine that is decomposed into the Adaptation mediator and the 

Case-based reasoning engine. 

 

4.1 The managed system 

The managed system is the system that needs to adapt its run-time behaviour 

autonomously e.g. the robot system discussed in Section 2. The managed system must 

provide a set of its self-adaptation concerned attributes. An example of these attributes, 

based on the motivating example discussed in Section 2, is shown in Table 2. The table 

also shows the complexity of the adaptation space size i.e. the robot may run in one of 

8640 possible different configurations. 
 



 
Figure 2: Framework Reference Model 

 

Attribute Values set 

Communication OFF, VHF, X−band, UHF 

Power Mode Full Power, Medium Power, Saving Mode 

Power Meter   Low, Medium, High 

Speed Low, Medium, High 

Video quality   Very low, Low, Medium, High, Very High 

Data Backup   On, Off 

Obstacles True, False 

Encryption Zig-Zag Permutation, Puer Permutation, Naive, Video 

Encryption Algorithm  

Table 2: Robot Attribute Data Sheet 

 

4.2 Adaptation engine  

This section provides details about the components of the adaptation engine. 
 

4.2.1 Adaptation Sample  

Before digging deeper in the model's details, it is better to show how our solution works 

with two adaptation samples. We assume that the managed system, the robot in our 

case, provides a service utility U and an adaptation process is issued when this utility is 



below or is approaching 1 a predefined utility threshold UT. Table 3 illustrates two 

randomly selected adaptations from the experiment that will be discussed later, one of 

them contains uncertain value. The first adaptation request embraces a defect in the 

operating mode of the robot as there is an obstacle while the robot speed is high which 

represents a violation. The adaptation response for this unwanted state of the robot is to 

reduce the speed. Reducing the speed is the only possible adaptation response as we 

cannot change the obstacle to false as it is not adaptable attribute. The table shows that 

the utility of the adaptation request is 0.484 which is a utility threshold breaker, 

assuming that UT is 0.5. 

The adaptation engine managed to provide an adaptation response with utility 0.892 

which is greater than 0.5. The other adaptation requests hold uncertain value in the 

communication attribute. The adaptation engine issued adaptation process for this robot 

state because the uncertain attribute, the communication, is uncertain and one possible 

values, off, leads to utility less than UT. When the communication attribute goes off, it 

breaks the UT, which means that the robot is unable to establish a connection with the 

remote centre. As a result an adaptation process is issued that produces the adaptation 

response that assures that the communication is set with appropriate value to enable 

communication with the remote centre. Needless to say that the chosen value, UHF, 

should not break the utility of the robot which is satisfied and the utility is 0.8666. 

Another possible adaptation response for the second adaptation request is to enable the 

data back up and to set off the communication. However, the adaptation engine did not 

choose this scenario because its utility is less than the utility of the chosen adaptation 

response. This is because the ultimate goal of the framework is to maximize the utility 

of the managed system. 
  

Attribute  Ad.Req.1  Ad.Res.1  Ad.Req.2  Ad.Res.2 

Communication UHF UHF ? UHF 

Power Mode Saving 

Mode 

Saving Mode Medium Power Medium Power 

Power Meter   High High High High 

Speed High Low Low Low 

Video quality   Very High High Low Low 

Data Backup   Off Off Off Off 

Obstacles True True False False 

Encryption Pure Perm. Puer Perm. Zig-Zag 

Perm. 

Zig-Zag 

Permu. 

Utility 0.484 0.892 ? 0.8666 

Table 3: Adaptation Sample 

  

 

4.2.2 Adaptation mediator 

Now, we can present in more details the description of our framework. As shown in 

Figure 2, the adaptation mediator is responsible for: 

 Monitoring the managed system by reading its attributes to decide whether an 

adaptation is required or not. The framework expects that the managed system 

provides a service with overall utility U. The adaptation request is the set of 

attributes' values of the managed system at the time of issuing the adaptation 

                                                 
1
 This is because our solution treats self-adaptation in a reactive or a proactive way depending on the 

implementation of monitoring process within the adaptation mediator. 



process. Consequently, the adaptation request is sent to the adaptation engine to 

start the adaptation process. 

 Executing the adaptation response received from the adaptation engine. The 

adaptation response is the result of the adaptation process performed by the 

adaptation engine, which is the corrective state to be applied on the managed 

system. 

 
4.2.3 Case-based reasoning engine 

The adaptation engine is built mainly on Case-based Reasoning (CBR) which facilitates 

the automation process of the adaptation. CBR is an artificial intelligence paradigm that 

mimics the human behaviour in solving problems based on the solutions of previous and 

similar problems. Generally, a case is an object that encapsulates some attributes e.g. 

the robot attributes shown in Table 3 and, traditionally, the attributes of a case are 

divided into problem related attributes and solution related attributes. In our work we 

model the adaptation request as problem part of a CBR case and the adaptation response 

as solution part of a CBR case. Specifically, the red attributes in Table 3 represents a 

problem part of a CBR case and the green attributes represents the solution part of a 

case. The task of our framework is to find out an appropriate solution for these red 

attributes. Traditional CBR life cycle, as shown in Figure 3, consists of four stages: 

 

 
Figure 3: Case-based Reasoning Life Cycle [25] 

 

  

 Retrieve: The CBR system retrieves the most similar case(s) from the 

Knowledge Base by applying the similarity measures on the request case.  In 

[25] [26] [27], many similarity measures for improved case retrieval have been 

introduced. Figure 4 shows an example of how the similarity is performed on the 

cases from the knowledge base and which attributes are considered in the 

similarity measures. 



 
Figure 4: Example of similarity measure between adaptation request and a case from the 

 

 Reuse (Adapt): In this stage, CBR benefits from the information of the retrieved 

cases. If the retrieved cases are not sufficient in themselves to solve the request 

case, the CBR engine adapts this/these case/s to generate a new solution. Some 

of the common techniques for reusing and adapting the retrieved knowledge are 

introduced in [28]. We use Generative Adaptation [29], which requires some 

heuristics, e.g. utility functions, to provide an efficient adaptation process. 

 

 Revise: A revision of the new solution is important to make sure that it satisfies 

the requirements of the managed system. The revision process can be done by 

applying the adaptation response to real world, evaluate it by the domain expert, 

or by simulation approaches. To enhance the automation of the adaptation 

process, we use utility functions which revise the generated adaptation and judge 

its utility satisfaction on the fly.  

 

 Retain: In this stage, the new generated cases are saved in the knowledge base. 

Case-Based Learning (CBL) has been introduced in [30] to provide algorithms 

and approaches for an efficient retain process.  

 

 

5.  MODEL AND SPECIFICATIONS 

In this section we explain how we tackle the challenges described in Section 1. 

Precisely, it explains the adaptation process and how the utility functions are used.  
 

 

5.1 The knowledge base 

The knowledge base in our framework contains the states of the managed system that 

satisfy its requirements. This property is guaranteed in the retain process where no case 

is retained unless it has a utility greater than UT. The knowledge base is modelled by 

the domain experts by capturing all attributes of the managed system that are related to 

the adaptation process. The operations performed on the knowledge base are restricted 



to case retrieval and case retention. However, the domain expert could investigate it for 

offline maintenance e.g. adds new cases, remove cases and alter cases. Table 4 shows an 

excerpt from the knowledge base for the motivating example discussed in Section 2. 

Assuming that the utility threshold is 0.5, it is clear from the table that all the cases in 

the knowledge base have a utility greater than the utility threshold. 
 

Attribute C1 C2 C3 C4 C5 

Communication UHF VHF VHF UHF UHF 

Power Mode Medium Medium Full Full Medium 

Power Meter   High High High Low High 

Speed Low Medium Medium Medium Medium 

Video quality   V.Low High V.High Medium Medium 

Data Backup   Off Off Off On Off 

Obstacles False False False True True 

Encryption Puer Permu. Zig-Zag Perm. VEA Puer Perm. VEA 

Utility 0.813 0.603 0.758 0.565 0.928 

Table 4: Excerpt from the knowledge bass 

 

 

5.2 The managed system attributes 

The managed system operating states are modelled as CBR cases. Each case has a set of 

attributes and each attribute has a type and a weight. 

 
5.2.1 Attribute types 

Case attributes can be flagged as one or more of the types shown in Table 5. During the 

design of the managed system, each attribute must be labelled as adaptable or 

unadaptable. During the analysis process of the adaptation request, we identify UT-

breaker and utility-antagonist attributes. The framework alters the UT-breaker to 

provide adaptation response with utility greater than the UT. For providing an optimal 

adaptation response (Optimization problem), the utility-antagonist attributes is altered, 

which raises the utility of the provided adaptation response. 
   

Attribute Type Description 

Adaptable An attribute whose value can be changed during the 

adaptation process e.g. Speed.   

Unadaptable An attribute whose value cannot be changed during 

the adaptation process e.g. Obstacles 

UT-breaker An attributes whose value participates in reaching a 

goal-violating state.   

Utility-

antagonist 

An attribute whose value participates in decreasing 

the overall utility. 

Table 5: Managed System Attributes Types 

 

5.2.2 Attributes weights  
 

It is normal that the attributes of the managed system vary in their effect on the utility of 

the provided service. Based on that, Pareto principle is applied and each attribute is 

weighted in order to provide optimal representation of the state of the managed system. 
 

5.3 Utility functions 

Utility functions are incorporated in the reference model in order to: (1) assess the cases 

of the knowledge base in terms of satisfying the requirements of the managed system, 



(2) provide a heuristic for the adaptation process and provide affirmation regarding the 

adaptation response expediency, (3) analyse the adaptation requests to identify UT-

breaker attributes and (4) determine when to issue the adaptation process; i.e. if the 

managed system's overall utility reaches or is approaching the UT. 

 
5.3.1 Utility function definition  

Utility function is a function that maps a set of attributes to a value if certain condition 

holds. For simplicity, the utility function definition is based on the work in [31] and 

extended in order to combine multiple utility-involved attributes. 

 The utility function is defined as in Equation 1: 
  

 
Equation 1 

  

 

where: 

 (a1,...,ai) is the set of involved managed system attributes. 

 (v1,...,vn) are the values of the utility function. 

 (condition1 ,..., conditioni-1) is a set of condition for satisfying the utility 

function. 
 

An example of the utility function is shown in Equation 2 which describes the relation 

among Power Mode, Video Quality and Encryption Technique: 
  

 
Equation 2 

 

 

5.3.2 Utility function weight 

In reality, the adaptation-involved attributes of the managed system can be shared by 

more than one utility function due to the correlation among these attributes. Weighting 

these utility functions is a crucial issue in modelling the managed system's 

requirements. The weighting process is normally the task of the domain expert and can 

be improved by weight learning. 
 

5.3.3 Overall utility function 

The {Weighted Geometric Mean} (WGM) is used to estimate the overall utility of the 

managed system in terms of its utility functions. If we have a set of utility function 



values U= {u1,u2,...,un\} with corresponding weights W={w1,w2,...,wn }, then the overall 

utility is estimated by the following equation: 
  

 

 
Equation 3 

 

5.4 Adaptation process 

In this section we describe the adaptation process shown in Figure 5. The adaptation 

process goes through the following phases: 

 
5.4.1 Analysing adaptation request  

When the adaptation engine receives an adaptation request, it analyzes it to identify the 

attributes that breaks UT and the attributes that antagonize the managed system utility. 

This identification process is done by comparing the adaptation request values to the 

utility functions. That is any attribute participates in making any of these utility function 

below the UT is considered as utility breaker attribute. Similarly, any attribute decreases 

any of the utility functions is considered as antagonistic attribute. The identification of 

these attributes helps in providing efficient adaptation response by changing the values 

of these two types of attributes to get higher utility from the adaptation response. 

 
 

Figure 5: Adaptation Process Flow Chart 

 

5.4.2 Case retrieval  
  

Case retrieval is CBR core functionality. We retrieve the most similar case(s), if any, to 

the request case as shown in Figure 2. It is important to mention that, the request case is 



formulated from the adaptation request by excluding the UT-breaker attributes from it. 

This exclusion is inevitable as the knowledge base keeps only cases of best operating 

states that have no UT-breaker values at all. After this formulation of the request case, it 

is ready for the similarity measure calculation, as shown in Figure 4, to find its best 

matching cases. For example, if the robot system is running with the following 

attributes: {Power= Full power, Video Quality= Very High, Obstacles=True, Speed= 

Fast}, then, obviously, this state represents an unwanted operating state because the 

robot speed should not be fast if an obstacle is detected. This state is a typical adaptation 

request as it represents a deviation from the system requirements that are defined by a 

utility function similar to Equation 2. As the speed is the UT-breaker attribute in this 

example, the request case will be formulated by excluding it from the adaptation 

request. So the adaptation case of that adaption request is {Power= Full power, Video 

Quality= Very High, Obstacles=True}. 
 

5.4.2 Constructing qualified adaptation frame (QAF) 

The retrieval process for adaptation requests returns a set of cases called Qualified 

Adaptation Frame (QAF), such that each case Ck in this set satisfies the condition: 
  

 
Equation 4 

 

 Where β is a value between [0,1] and represents the minimal similarity value for 

accepting retrieved cases from the knowledge base and Sim is a function that calculates 

the similarity between the adaptation case and each of the retrieved case. Having the 

QAF ready, a decision on which adaptation response to select has to be taken. In fact, 

similarity is not the only decisive factor, however, the utility of the retrieved case is also 

considered. This combination is called Case Usefulness. We calculate the usefulness of 

a case in the QAF by Equation 5: 
 

 
Equation 5 

 

Where CU is the Case Usefulness for a case c in the QAF and sim is the similarity 

between the adaptation request Adapreq and the case c. This novel combination in 

calculating case usefulness is essential. On the one hand, the inclusion of similarity of 

the retrieved cases in calculating case usefulness is important as higher similarity leads 

to fewer changes in the managed system attributes. On the other hand, the inclusion of 

the utility reflects the quality of the case in terms of meeting the managed system's 

requirements. 
 

5.4.3 Generating adaptation response 

If the QAF is empty, the adaptation response is generated based on the utility function 

by adapting the request case attributes in order to provide a case with a utility greater 

than UT. This process is called Utility-guided constructive adaptation which has two 

flavours. (1)First Fit Heuristic: This is a normal iterative search process in the space 

values of the attributes that is applied on the request case [32]. The first value that 

causes the utility of adaptation request to be greater than UT is returned as an adaptation 

response. (2) Best Fit Heuristic: which is an extension of the first fit heuristic with extra 



capability; that is the search process finds values that maximize the utility of the 

adaptation response (i.e. providing an optimal adaptation). If the adaptation response is 

generated by one of the previous ways, the utility of the generated case is considered as 

the case usefulness. 

 
5.4.4 Retaining 

Retain phase is restricted to the newly generated adaptation response from the Utility-

guided constructive adaptation process. As all of the generated adaptation responses 

have a utility greater than UT, they are qualified for retaining in the knowledge base for 

future reuse. It is clear that our model is able to start operating with an empty 

knowledge base, which enables a full automation of the adaptation process. The utility 

functions govern the learning process, which guarantees the quality of retained cases. 

The number of retained cases in the knowledge base decreases overtime which raises 

the likelihood of retrieving the adaptation response instead of generating it. This has a 

positive impact on the performance and reduces the response time of the adaptation 

engine significantly. Algorithm 1 abstracts the automation of adaptation process of our 

solution. 
 

 
Algorithm 1 

   

5.5 Run-time uncertainty diminution 

Our framework’s ultimate goal is to provide an adaptation response that maximizes the 

utility of the managed system. Therefore, when the managed system is running under 

uncertain state, consequently its utility is not deterministic; we need to quantify this 

uncertainty to provide efficient adaptation responses. To that end, we are identifying 

uncertainty by capturing its three dimensions [28]: 

 



 Location of uncertainty: uncertainty is revealed within our model in two 

locations. The first location (Location 1) is the managed system state and second 

location (Location 2) is within the QAF. 

    

 Nature of the uncertainty in Location 1 is the run-time uncertainty which is the 

knowledge shortage in the managed system attributes' values. This could be due 

to environmental reasons or measurement errors 
2
 in providing known values. 

The nature of uncertainty in Location 2 is the variability. This means that the 

QAF has more than one case with the same maximum highest usefulness. 

    

 Level of uncertainty needs to be estimated. Otherwise, we will not be able to 

decide whether an adaptation is required or not. To estimate the level of 

uncertainty in Location 1, we start with generating a set ᴋ of all possible states 

that the uncertain state can be one of them. Then, the number  of states that 

belongs to ᴋ and require adaptation is calculated. Subsequently, the probability 

µ that the uncertain state is a UT-breaker is determined as seen in Equation 6. 

Also, the uncertainty degree in the managed system ɵ is estimated as shown in 

Equation 7.  
  

 
Equation 6 

 

Finally, the overall uncertainty Level   is estimated by Equation 7. 

 

 
Equation 7 

 

Even though our work handles the run-time uncertainty in Location 1, by calculating the 

uncertainty level, our framework provides a naive solution for estimating the level of 

the uncertainty in Location 2 (due to variability in the QAF). This solution does not 

require any further calculations. That is, if there is more than one case with the same 

highest usefulness in the QAF, then the selected case is the case with the highest utility 

as it satisfies the ultimate goal of the framework we mentioned earlier in this section. 

 

In the context of utility functions, there are two ways to deal with uncertainty: (1) 

Optimistic Paradigm: which deals with the uncertain values as values that heighten the 

utility and (2) Pessimistic Paradigm: which deals with the uncertain values as values 

that belittle the utility. Both pessimistic and optimistic paradigms are not preferable in 

systems like the one in our motivating example. This is because when the robot is 

operating in an optimistic paradigm and its uncertain state dictates an adaptation, the 

optimistic paradigm will fail to issue an adaptation process. Likewise, when the robot is 

operating in a pessimistic paradigm and its uncertain state do not dictate an adaptation; 

the pessimistic paradigm will cause performance overhead for issuing useless 

                                                 
2 For example sensor or actuator errors and problems 



adaptation. To diminish the run-time uncertainty efficiently, we introduce a Hybrid 

Paradigm that depends on a cut-off value,    threshold
3
. If,    threshold is one then it behaves 

pessimistically i.e. an adaptation process is issued whenever the managed system runs 

in uncertain state, and when    threshold  is zero, it behaves optimistically i.e. no adaptation 

process is issued. Intuitively,  threshold should maintain a value greater than zero and less 

than one. An adaptation process is issued only when    is less than or equal  

   threshold. 

 

6. PROGRESS AND CURRENT STATUS 

A prototypical implementation of the solution has been done. This implementation includes the 

integration of the CBR engine with utility functions. The implementation also includes the 

generative adaptation of the adaptation responses. Moreover, uncertainty analysis and 

quantification are provided in this implementation paving the way for handling uncertainty 

during run-time. The three dimensions of the uncertainty [28] has been modelled and 

implemented. 

7. FUTURE DIRECTION AND EVALUATION 

For future direction, firstly, we will use a case study to empirically evaluate and validate our 

approach. The case study i.e. the managed system should require the self-adaptivity mechanism 

that performs well under run-time uncertainty. Secondly, we will evaluate the results of the case 

study application. The evaluation will be based on software quality metrics and GQM [29]. We 

expect that the experimentation of our solution will provide a positive potential results for both 

handling the uncertainty and the complexity of adaptation space. However, we do not have a 

clue regarding the response time of the adaptation engine, the results will reveal this issue. 

8. CONCLUSION 

In this paper, we have presented our theoretical approach for realizing self-adaptivity in 

software systems. We started by showing the gabs in the research and the expected 

contributions of the research. Also, we have presented details about the solution model and the 

used technology, Case-based reasoning. The progress of the work was presented along with the 

future directions. This paper ended with our vision of the evaluation process of our solution. 
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