
A Framework for Enhancing Performance and
Handling Run-time Uncertainty in Self-adaptive

Systems

Mohammed Abufouda

Department of Computer Science, Technical University of Kaiserslautern,

Kaiserslautern, Germany
abufouda@cs.uni-kl.de

ABSTRACT

Self-adaptivity allows software systems to autonomously adjust their behavior during run-time to reduce

the cost complexities caused by manual maintenance. In this paper, a framework for building an external

adaptation engine for self-adaptive software systems is proposed. In order to improve the quality of self-

adaptive software systems, this research addresses two challenges in self-adaptive software systems. The

first challenge is to provide better performance of the adaptation engine by managing the complexity of

the adaptation space efficiently and the second challenge is handling run-time uncertainty that hinders the

adaptation process. This research utilizes Case-based Reasoning as an adaptation engine along with utility

functions for realizing the managed system’s requirements.

KEYWORDS

Software Quality, Model-Driven Software, Self-adaptive Software Systems, Case-based Reasoning,

Run-time Uncertainty

1. INTRODUCTION

The majority of the existing work in the literature agrees [1] [2] that self-adaptivity in software

systems is the ability of a software system to adjust its behaviour during run time to handle

software system's complexity and maintenance costs [3] while preserving the requirement of the

system. This property dictates the presence of an adaptation mechanism in order to build the

logic of self-adaptivity without human intervention. Developing a self-adaptive software system

is subjected to many challenges like handling the complexity of the adaptation space of the

managed system. This complexity is conceived when the number of the states that the managed

system can run in is relatively large. Also, this complexity manifests itself when new states are

needed to be inferred from previous one i.e. learning from past experience. Another challenge is

the uncertainty that hinders the adaption process during run-time. This paper will address these

challenges. More precisely, our framework is concerned with the following problems:

 Run-time uncertainty handling: Uncertainty is a challenge that exists not only in self-

adaptive software systems but also in the entire software engineering field on different

levels. Therefore managing uncertainty is an essential issue in constructing a self-

adaptive software system as uncertainty hinders the adaptation process if it is not

handled and diminished.

 Adaptation space: The adaptation process raises a performance challenge if the

adaptation space is relatively large, particularly when new adaptations are required to be

inferred. This challenge requires an efficient mechanism that guarantees learning new

adaptations as well as providing the adaptation with satisfactory performance. This

means that the adaptation engine's response should be provided as soon as an adaptation

is issued since late adaptations provided by the adaptation engine could be futile.

mailto:abufouda@cs.uni-kl.de

The rest of this paper is structured as follows: Section 2 lists the related work and the existing

gabs in the literature. Section 3 shows a motivating example the will be used as a running

example throughout this paper. In Section 4 we will demonstrate an overview of our solution

while in Section 5 detailed information will be provided. Section 6 and 7contains the progress

and the future of our research, in particular the evaluation. This paper concludes in Section 8.

2. RELATED WORK

The body of literature in the area of self-adaptivity has provided a plethora of frameworks,

approaches and techniques to enhance self-adaptivity that is widespread in many fields. This

section contains the related work to our research which has been introduced earlier as a short

paper in [37]. In the following sections, we will present the related work categorized according

to the mechanisms used to support self-adaptivity.

2.1 Learning based adaptation

Salehie and Tahvildari [2] proposed a framework for realizing the deciding process performed

by an external adaptation engine. They used knowledge base to capture the managed system's

information namely domain information, goals and utility information. This is used in the

decision-making algorithm, as they name it, which is responsible for providing the adaptation

decision. In [4], Kim and Park provided a reinforcement learning-based approach for

architecture-based self-managed software using both on-line and off-line learning. FUSION [5]

was proposed by Elkhodary et al. [5] to solve the problem of foreseeing the changes in

environment, which hinders the adaptation during run time for feature-based systems using a

machine learning technique. In [6], Mohamed-Hedi et al. provided a self-healing approach to

enhance the reliability of web services. A simple experiment was used to validate their approach

without empirical evidence.

2.2 Architecture & model based adaptation

RAINBOW [7] is a famous contribution in the area of self-adaptation based on architectural

infrastructures reuse. RAINBOW monitors the managed system using abstract architectural

models to detect any constraints violation. GRAF [8] was proposed for engineering self-

adaptive software systems. The communication between the managed system and GRAF

framework is carried out via interfaces. This approach has a performance overhead because

GRAF reproduces a new adaptable version of the managed system. Similar to GRAF [8] Vogel

and Giese [9] assumed that adaptation can be performed in two ways, parameter adaptation and

structural adaptation. They provided three steps to resolve structural adaptation and used a self-

healing web application as an example. Morin et al. [10] presented an architectural based

approach for realizing software adaptivity using model-driven and aspect oriented techniques.

The aim of this approach was to reduce the complexities of the system by providing

architectural adaptation based solution. They provided model-oriented architectures and aspect

models for feature designing and selection. Khakpour et al. [11] provided PobSAM, a model-

based approach that is used to monitor, control and adapt the system behaviour using LTL to

check the correctness of adaptation. Asadollahi et al. [12] presented StarMX framework for

realizing self-management for Java-based applications. In their work they provided so called

autonomic manager, which is an adaptation engine that encapsulates the adaptation logic.

Adaptation logic was implemented by arbitrary policy-rule language. StarMX uses JMX and

policy engines to enable self-management. Policies were used to represent the adaptation

behaviour. This framework is restricted to Java-based application as the definition of processes

is carried out by implementing certain Java interfaces in the policy manager. They evaluated

their framework against some quality attribute. However, their evaluation for quality attributes

was not quantified quantitatively. The work in [13] provided a new formal language for

representing self-adaptivity for architecture-based self-adaptation. This language was used as an

extension of the RAINBOW framework [7]. This work explains the use of this new language

using an adaptation selection example that incorporates some stakeholders' interests in the

selection process of the provided service which represents the adaptive service. Bontchev et al.

[14] provides a software engine for adaptable process controlling and adaptable web-based

delivered content. Their work reuses the functionality of the existing component in order to

realize self-adaptivity in architecture-based systems. This work contains only the proposed

solution and the implementation without experiment and evaluation.

2.3 Middleware based adaptation

In [15], a prototype for seat adaptation was provided. This prototype uses a middleware to

support an adaptive behaviour. This approach was restricted to the seat adaptation which is

controlled by a software system. Adapta framework [16] was presented as a middleware that

enabled self-adaptivity for components in distributed applications. The monitoring service in

Adapta monitored both hardware and software changes.

2.4 Fuzzy control based adaptation

Yang et al. [17] proposed a fuzzy-based self-adaptive software framework. The framework has

three layers: (1) Adaptation logic layer, (2) Adaptable system layer, which is the managed

system and (3) Software Bus. The adaptation logic layer represents the adaptation engine that

includes the fuzzy rule-base, fuzzification and de-fuzzification components. This framework has

a set of design steps in order to implement the adaptation. POISED [18] introduced a

probabilistic approach for handling uncertainty in self-adaptive software systems by providing

positive and negative impacts of uncertainty. An evaluation experiment had been applied which

showed that POISED provided an accepted adaptation decision under uncertainty. The

limitations of this approach are that it handles only internal uncertainty and does not memorize

and utilize previous adaptation decisions.

2.5 Programming framework based adaptation

Narebdra et al. [19] proposed programming model and run time architecture for implementing

adaptive service oriented. It was done via a middleware that solves the problem of static binding

of services. The adaptation space in this work is limited to three situations that require

adaptation of services. MOSES approach was proposed in the work [20] to provide self-

adaptivity for SOA systems. The authors used linear programming problem for formulating and

solving the adaptivity problem as a model-based framework. MOSES aimed to improve the

QoS for SOA, and the work in [20] provides a numerical experiment to test their approach.

QoSMOS [21] provided a tool-supported framework to improve the QoS for the service based

systems in adaptive and predictive manner. The work in [22] provided an implementation of

architecture-based self-adaptive software using aspect oriented programming. They used a web-

based system as an experiment to test their implementation. Their experiment showed that the

response time of the self-adaptive implementation is better than the original implementation

without a self-adaptivity mechanism. Liu and Parashar [23] provided Accord, which is a

programming framework that facilitates realizing self-adaptivity in self-managed applications.

The usage of this framework was illustrated using forest fire management application.

Table 1, which is similar to what proposed in [24], summarizes the related work done in this

research. The table has two aspects of comparison (1) Research aspects and (2) Self-adaptivity

aspect. The earlier aspect is important and represents an indication regarding the maturity and

creditability of the research. The later aspect is related to the topic of this paper.

Covered
literature

categorization

Work

Research aspects Self-adaptive software system aspects

Problem
Statement

Contribution
statement

Experiment
evaluation

metrics
Limitations

Threats
to

validity

Adaptation
Expediency

Adaptation
remembrance

Uncertainty
Handling

Adaptation
Res. Time

Adaptation
style

Adaptation
engine

Learning
 based

adaptation

[2] √ √ X X X X X √ X X Dynamic External

[4] √ √ √ X X X √ X X X Dynamic External

[5] √ √ √ √ √ X √ √ X √ Dynamic External

[6] X X √ X X X X X X X Dynamic External

Architecture &
model based
adaptation

[7] √ √ √ √ X X X X √ √ Dynamic External

[8] √ √ √ √ X √ X X X X Dynamic External

[9] √ √ √ X X X X X X X Static Internal

[12] X X √ X X X √ X X X Dynamic External

[10] X X √ √ X X √ X X √ Dynamic External

[11] √ √ X X X X X X X X Dynamic Internal

[13] √ √ √ X X X X X X X Static External

[14] √ √ X X X X X √ X X Dynamic External

Middleware based
adaptation

[15] √ √ √ X X X √ X X X Static Internal

[16] √ √ X X X X X X X X Dynamic External

Fuzzy control based
adaptation

[17] √ √ X X X X X X X X Dynamic External

[18] √ √ √ √ X X √ X √ √ Dynamic Internal

Programming
framework based

adaptation

[19] X X √ √ X X X X X X Dynamic External

[20] √ √ √ X X X √ X X X Dynamic External

[22] √ √ √ √ X X √ X X √ Dynamic Internal

[23] √ √ √ X X X √ X X √ Dynamic Internal

Table 1: Summary of related work

3. MOTIVATING EXAMPLE

The motivating example is a software system controlling a robot that requires self-adaptive

behaviour during run-time. This motivating example is used for both motivating the need for

self-adaptive software systems and for the experimentation and the validation of our framework.

The idea of the robot is derived from [18] with an attribute extension for a more variety of

configurations. Figure 1 shows an abstract view of the robot managed system which has an

exploratory task and should submit the captured videos to a remote controlling centre. Even

though the example is from the robotics field, we emphasize that our concern is only the

software system that manages the self-adaptive behaviour of the robot rather than the robot

itself. This means that the robot as a managed system could be any other system that requires

enabling the self-adaptation property. We will use this example as a running example through

this paper.

Figure 1: Robot Components

 The components in Figure 1 are dependent on each other; one component may affect other

component(s). This dependency contributes to providing a set of various possible states of the

robot, which is useful in explaining how our framework works. The robot requires adaptation of

its behaviour during run-time in order to keep fulfilling its requirements without manual

controlling from the remote controlling centre. This adaptation is a response to the changes in

the environment where the robot is working and/or the changes in the attributes of the robot

itself e.g. the speed and the power. These requirements are quality of service (QoS)

requirements and functionality requirements that need to be achieved by the robot self-

adaptively.

An example of QoS requirements is Video Quality where the robot aims at keeping the quality

of the transmitted video as good as possible. This is done by selecting the appropriate video

quality automatically during run-time. The available power affects this requirement because

higher video qualities require more power consumption than lower ones. The robot should

control this process efficiently. Another example of QoS requirements is Transmission Security

where the robot should keep the transmitted data as secure as possible during submitting it to

the remote controlling centre. This is achieved by selecting one among a set of encryption

techniques where each technique has its advantages and drawbacks in terms of power

consumption, security level, and encryption performance. An example of functionality

requirements is Robot Fitness where the robot should manage the relations among its

attributes in order to keep itself as fit as possible. For instance, the robot should reduce

its speed if the power is not sufficient or an obstacle is detected by the sensors unit.

Another example of functionality requirements is to enable the data backup if the

communication with the remote centre is lost. This requires choosing a suitable video

quality due to the limitation of the space of backup storage.

The challenges that the robot system may face in the self-adaptation context and are

addressed by our framework automatically are:

 Run-time uncertainty handling: The robot may fail to identify one of its

environmental variable values during its operation. For example the sensors may

fail to tell whether there is an obstacle in the area or not. In such problematic

situations, the robot should behave tolerably; otherwise the robot may run into

unwanted states.

 Adaptation space complexity impacts: If the robot has N attributes each of them

has M different possible values, then the possible states S that the robot may run

in are: ∏
 This requires an efficient handling of these operating states that

guarantees accepted performance. Concretely, the response time of the

adaptation engine is a crucial issue because the delayed adaptation response

could be useless. For example, if the robot's communication with the remote

centre has been lost, then the robot should start the back-up storage in order to

keep all the captured videos. Such decisions should be provided to the robot

immediately; otherwise the robot could deviate from its requirements.

4. SOLUTION OVERVIEW

In this section, an overview of the solution will be presented. Based on Figure 2, which

illustrates framework reference model, the following subsections describe the Managed

system and adaptation engine that is decomposed into the Adaptation mediator and the

Case-based reasoning engine.

4.1 The managed system

The managed system is the system that needs to adapt its run-time behaviour

autonomously e.g. the robot system discussed in Section 2. The managed system must

provide a set of its self-adaptation concerned attributes. An example of these attributes,

based on the motivating example discussed in Section 2, is shown in Table 2. The table

also shows the complexity of the adaptation space size i.e. the robot may run in one of

8640 possible different configurations.

Figure 2: Framework Reference Model

Attribute Values set

Communication OFF, VHF, X−band, UHF

Power Mode Full Power, Medium Power, Saving Mode

Power Meter Low, Medium, High

Speed Low, Medium, High

Video quality Very low, Low, Medium, High, Very High

Data Backup On, Off

Obstacles True, False

Encryption Zig-Zag Permutation, Puer Permutation, Naive, Video

Encryption Algorithm

Table 2: Robot Attribute Data Sheet

4.2 Adaptation engine

This section provides details about the components of the adaptation engine.

4.2.1 Adaptation Sample

Before digging deeper in the model's details, it is better to show how our solution works

with two adaptation samples. We assume that the managed system, the robot in our

case, provides a service utility U and an adaptation process is issued when this utility is

below or is approaching 1 a predefined utility threshold UT. Table 3 illustrates two

randomly selected adaptations from the experiment that will be discussed later, one of

them contains uncertain value. The first adaptation request embraces a defect in the

operating mode of the robot as there is an obstacle while the robot speed is high which

represents a violation. The adaptation response for this unwanted state of the robot is to

reduce the speed. Reducing the speed is the only possible adaptation response as we

cannot change the obstacle to false as it is not adaptable attribute. The table shows that

the utility of the adaptation request is 0.484 which is a utility threshold breaker,

assuming that UT is 0.5.

The adaptation engine managed to provide an adaptation response with utility 0.892

which is greater than 0.5. The other adaptation requests hold uncertain value in the

communication attribute. The adaptation engine issued adaptation process for this robot

state because the uncertain attribute, the communication, is uncertain and one possible

values, off, leads to utility less than UT. When the communication attribute goes off, it

breaks the UT, which means that the robot is unable to establish a connection with the

remote centre. As a result an adaptation process is issued that produces the adaptation

response that assures that the communication is set with appropriate value to enable

communication with the remote centre. Needless to say that the chosen value, UHF,

should not break the utility of the robot which is satisfied and the utility is 0.8666.

Another possible adaptation response for the second adaptation request is to enable the

data back up and to set off the communication. However, the adaptation engine did not

choose this scenario because its utility is less than the utility of the chosen adaptation

response. This is because the ultimate goal of the framework is to maximize the utility

of the managed system.

Attribute Ad.Req.1 Ad.Res.1 Ad.Req.2 Ad.Res.2

Communication UHF UHF ? UHF

Power Mode Saving

Mode

Saving Mode Medium Power Medium Power

Power Meter High High High High

Speed High Low Low Low

Video quality Very High High Low Low

Data Backup Off Off Off Off

Obstacles True True False False

Encryption Pure Perm. Puer Perm. Zig-Zag

Perm.

Zig-Zag

Permu.

Utility 0.484 0.892 ? 0.8666

Table 3: Adaptation Sample

4.2.2 Adaptation mediator

Now, we can present in more details the description of our framework. As shown in

Figure 2, the adaptation mediator is responsible for:

 Monitoring the managed system by reading its attributes to decide whether an

adaptation is required or not. The framework expects that the managed system

provides a service with overall utility U. The adaptation request is the set of

attributes' values of the managed system at the time of issuing the adaptation

1
 This is because our solution treats self-adaptation in a reactive or a proactive way depending on the

implementation of monitoring process within the adaptation mediator.

process. Consequently, the adaptation request is sent to the adaptation engine to

start the adaptation process.

 Executing the adaptation response received from the adaptation engine. The

adaptation response is the result of the adaptation process performed by the

adaptation engine, which is the corrective state to be applied on the managed

system.

4.2.3 Case-based reasoning engine

The adaptation engine is built mainly on Case-based Reasoning (CBR) which facilitates

the automation process of the adaptation. CBR is an artificial intelligence paradigm that

mimics the human behaviour in solving problems based on the solutions of previous and

similar problems. Generally, a case is an object that encapsulates some attributes e.g.

the robot attributes shown in Table 3 and, traditionally, the attributes of a case are

divided into problem related attributes and solution related attributes. In our work we

model the adaptation request as problem part of a CBR case and the adaptation response

as solution part of a CBR case. Specifically, the red attributes in Table 3 represents a

problem part of a CBR case and the green attributes represents the solution part of a

case. The task of our framework is to find out an appropriate solution for these red

attributes. Traditional CBR life cycle, as shown in Figure 3, consists of four stages:

Figure 3: Case-based Reasoning Life Cycle [25]

 Retrieve: The CBR system retrieves the most similar case(s) from the

Knowledge Base by applying the similarity measures on the request case. In

[25] [26] [27], many similarity measures for improved case retrieval have been

introduced. Figure 4 shows an example of how the similarity is performed on the

cases from the knowledge base and which attributes are considered in the

similarity measures.

Figure 4: Example of similarity measure between adaptation request and a case from the

 Reuse (Adapt): In this stage, CBR benefits from the information of the retrieved

cases. If the retrieved cases are not sufficient in themselves to solve the request

case, the CBR engine adapts this/these case/s to generate a new solution. Some

of the common techniques for reusing and adapting the retrieved knowledge are

introduced in [28]. We use Generative Adaptation [29], which requires some

heuristics, e.g. utility functions, to provide an efficient adaptation process.

 Revise: A revision of the new solution is important to make sure that it satisfies

the requirements of the managed system. The revision process can be done by

applying the adaptation response to real world, evaluate it by the domain expert,

or by simulation approaches. To enhance the automation of the adaptation

process, we use utility functions which revise the generated adaptation and judge

its utility satisfaction on the fly.

 Retain: In this stage, the new generated cases are saved in the knowledge base.

Case-Based Learning (CBL) has been introduced in [30] to provide algorithms

and approaches for an efficient retain process.

5. MODEL AND SPECIFICATIONS

In this section we explain how we tackle the challenges described in Section 1.

Precisely, it explains the adaptation process and how the utility functions are used.

5.1 The knowledge base

The knowledge base in our framework contains the states of the managed system that

satisfy its requirements. This property is guaranteed in the retain process where no case

is retained unless it has a utility greater than UT. The knowledge base is modelled by

the domain experts by capturing all attributes of the managed system that are related to

the adaptation process. The operations performed on the knowledge base are restricted

to case retrieval and case retention. However, the domain expert could investigate it for

offline maintenance e.g. adds new cases, remove cases and alter cases. Table 4 shows an

excerpt from the knowledge base for the motivating example discussed in Section 2.

Assuming that the utility threshold is 0.5, it is clear from the table that all the cases in

the knowledge base have a utility greater than the utility threshold.

Attribute C1 C2 C3 C4 C5

Communication UHF VHF VHF UHF UHF

Power Mode Medium Medium Full Full Medium

Power Meter High High High Low High

Speed Low Medium Medium Medium Medium

Video quality V.Low High V.High Medium Medium

Data Backup Off Off Off On Off

Obstacles False False False True True

Encryption Puer Permu. Zig-Zag Perm. VEA Puer Perm. VEA

Utility 0.813 0.603 0.758 0.565 0.928

Table 4: Excerpt from the knowledge bass

5.2 The managed system attributes

The managed system operating states are modelled as CBR cases. Each case has a set of

attributes and each attribute has a type and a weight.

5.2.1 Attribute types

Case attributes can be flagged as one or more of the types shown in Table 5. During the

design of the managed system, each attribute must be labelled as adaptable or

unadaptable. During the analysis process of the adaptation request, we identify UT-

breaker and utility-antagonist attributes. The framework alters the UT-breaker to

provide adaptation response with utility greater than the UT. For providing an optimal

adaptation response (Optimization problem), the utility-antagonist attributes is altered,

which raises the utility of the provided adaptation response.

Attribute Type Description

Adaptable An attribute whose value can be changed during the

adaptation process e.g. Speed.

Unadaptable An attribute whose value cannot be changed during

the adaptation process e.g. Obstacles

UT-breaker An attributes whose value participates in reaching a

goal-violating state.

Utility-

antagonist

An attribute whose value participates in decreasing

the overall utility.

Table 5: Managed System Attributes Types

5.2.2 Attributes weights

It is normal that the attributes of the managed system vary in their effect on the utility of

the provided service. Based on that, Pareto principle is applied and each attribute is

weighted in order to provide optimal representation of the state of the managed system.

5.3 Utility functions

Utility functions are incorporated in the reference model in order to: (1) assess the cases

of the knowledge base in terms of satisfying the requirements of the managed system,

(2) provide a heuristic for the adaptation process and provide affirmation regarding the

adaptation response expediency, (3) analyse the adaptation requests to identify UT-

breaker attributes and (4) determine when to issue the adaptation process; i.e. if the

managed system's overall utility reaches or is approaching the UT.

5.3.1 Utility function definition

Utility function is a function that maps a set of attributes to a value if certain condition

holds. For simplicity, the utility function definition is based on the work in [31] and

extended in order to combine multiple utility-involved attributes.

 The utility function is defined as in Equation 1:

Equation 1

where:

 (a1,...,ai) is the set of involved managed system attributes.

 (v1,...,vn) are the values of the utility function.

 (condition1 ,..., conditioni-1) is a set of condition for satisfying the utility

function.

An example of the utility function is shown in Equation 2 which describes the relation

among Power Mode, Video Quality and Encryption Technique:

Equation 2

5.3.2 Utility function weight

In reality, the adaptation-involved attributes of the managed system can be shared by

more than one utility function due to the correlation among these attributes. Weighting

these utility functions is a crucial issue in modelling the managed system's

requirements. The weighting process is normally the task of the domain expert and can

be improved by weight learning.

5.3.3 Overall utility function

The {Weighted Geometric Mean} (WGM) is used to estimate the overall utility of the

managed system in terms of its utility functions. If we have a set of utility function

values U= {u1,u2,...,un\} with corresponding weights W={w1,w2,...,wn }, then the overall

utility is estimated by the following equation:

Equation 3

5.4 Adaptation process

In this section we describe the adaptation process shown in Figure 5. The adaptation

process goes through the following phases:

5.4.1 Analysing adaptation request

When the adaptation engine receives an adaptation request, it analyzes it to identify the

attributes that breaks UT and the attributes that antagonize the managed system utility.

This identification process is done by comparing the adaptation request values to the

utility functions. That is any attribute participates in making any of these utility function

below the UT is considered as utility breaker attribute. Similarly, any attribute decreases

any of the utility functions is considered as antagonistic attribute. The identification of

these attributes helps in providing efficient adaptation response by changing the values

of these two types of attributes to get higher utility from the adaptation response.

Figure 5: Adaptation Process Flow Chart

5.4.2 Case retrieval

Case retrieval is CBR core functionality. We retrieve the most similar case(s), if any, to

the request case as shown in Figure 2. It is important to mention that, the request case is

formulated from the adaptation request by excluding the UT-breaker attributes from it.

This exclusion is inevitable as the knowledge base keeps only cases of best operating

states that have no UT-breaker values at all. After this formulation of the request case, it

is ready for the similarity measure calculation, as shown in Figure 4, to find its best

matching cases. For example, if the robot system is running with the following

attributes: {Power= Full power, Video Quality= Very High, Obstacles=True, Speed=

Fast}, then, obviously, this state represents an unwanted operating state because the

robot speed should not be fast if an obstacle is detected. This state is a typical adaptation

request as it represents a deviation from the system requirements that are defined by a

utility function similar to Equation 2. As the speed is the UT-breaker attribute in this

example, the request case will be formulated by excluding it from the adaptation

request. So the adaptation case of that adaption request is {Power= Full power, Video

Quality= Very High, Obstacles=True}.

5.4.2 Constructing qualified adaptation frame (QAF)

The retrieval process for adaptation requests returns a set of cases called Qualified

Adaptation Frame (QAF), such that each case Ck in this set satisfies the condition:

Equation 4

 Where β is a value between [0,1] and represents the minimal similarity value for

accepting retrieved cases from the knowledge base and Sim is a function that calculates

the similarity between the adaptation case and each of the retrieved case. Having the

QAF ready, a decision on which adaptation response to select has to be taken. In fact,

similarity is not the only decisive factor, however, the utility of the retrieved case is also

considered. This combination is called Case Usefulness. We calculate the usefulness of

a case in the QAF by Equation 5:

Equation 5

Where CU is the Case Usefulness for a case c in the QAF and sim is the similarity

between the adaptation request Adapreq and the case c. This novel combination in

calculating case usefulness is essential. On the one hand, the inclusion of similarity of

the retrieved cases in calculating case usefulness is important as higher similarity leads

to fewer changes in the managed system attributes. On the other hand, the inclusion of

the utility reflects the quality of the case in terms of meeting the managed system's

requirements.

5.4.3 Generating adaptation response

If the QAF is empty, the adaptation response is generated based on the utility function

by adapting the request case attributes in order to provide a case with a utility greater

than UT. This process is called Utility-guided constructive adaptation which has two

flavours. (1)First Fit Heuristic: This is a normal iterative search process in the space

values of the attributes that is applied on the request case [32]. The first value that

causes the utility of adaptation request to be greater than UT is returned as an adaptation

response. (2) Best Fit Heuristic: which is an extension of the first fit heuristic with extra

capability; that is the search process finds values that maximize the utility of the

adaptation response (i.e. providing an optimal adaptation). If the adaptation response is

generated by one of the previous ways, the utility of the generated case is considered as

the case usefulness.

5.4.4 Retaining

Retain phase is restricted to the newly generated adaptation response from the Utility-

guided constructive adaptation process. As all of the generated adaptation responses

have a utility greater than UT, they are qualified for retaining in the knowledge base for

future reuse. It is clear that our model is able to start operating with an empty

knowledge base, which enables a full automation of the adaptation process. The utility

functions govern the learning process, which guarantees the quality of retained cases.

The number of retained cases in the knowledge base decreases overtime which raises

the likelihood of retrieving the adaptation response instead of generating it. This has a

positive impact on the performance and reduces the response time of the adaptation

engine significantly. Algorithm 1 abstracts the automation of adaptation process of our

solution.

Algorithm 1

5.5 Run-time uncertainty diminution

Our framework’s ultimate goal is to provide an adaptation response that maximizes the

utility of the managed system. Therefore, when the managed system is running under

uncertain state, consequently its utility is not deterministic; we need to quantify this

uncertainty to provide efficient adaptation responses. To that end, we are identifying

uncertainty by capturing its three dimensions [28]:

 Location of uncertainty: uncertainty is revealed within our model in two

locations. The first location (Location 1) is the managed system state and second

location (Location 2) is within the QAF.

 Nature of the uncertainty in Location 1 is the run-time uncertainty which is the

knowledge shortage in the managed system attributes' values. This could be due

to environmental reasons or measurement errors
2
 in providing known values.

The nature of uncertainty in Location 2 is the variability. This means that the

QAF has more than one case with the same maximum highest usefulness.

 Level of uncertainty needs to be estimated. Otherwise, we will not be able to

decide whether an adaptation is required or not. To estimate the level of

uncertainty in Location 1, we start with generating a set ᴋ of all possible states

that the uncertain state can be one of them. Then, the number of states that

belongs to ᴋ and require adaptation is calculated. Subsequently, the probability

µ that the uncertain state is a UT-breaker is determined as seen in Equation 6.

Also, the uncertainty degree in the managed system ɵ is estimated as shown in

Equation 7.

Equation 6

Finally, the overall uncertainty Level is estimated by Equation 7.

Equation 7

Even though our work handles the run-time uncertainty in Location 1, by calculating the

uncertainty level, our framework provides a naive solution for estimating the level of

the uncertainty in Location 2 (due to variability in the QAF). This solution does not

require any further calculations. That is, if there is more than one case with the same

highest usefulness in the QAF, then the selected case is the case with the highest utility

as it satisfies the ultimate goal of the framework we mentioned earlier in this section.

In the context of utility functions, there are two ways to deal with uncertainty: (1)

Optimistic Paradigm: which deals with the uncertain values as values that heighten the

utility and (2) Pessimistic Paradigm: which deals with the uncertain values as values

that belittle the utility. Both pessimistic and optimistic paradigms are not preferable in

systems like the one in our motivating example. This is because when the robot is

operating in an optimistic paradigm and its uncertain state dictates an adaptation, the

optimistic paradigm will fail to issue an adaptation process. Likewise, when the robot is

operating in a pessimistic paradigm and its uncertain state do not dictate an adaptation;

the pessimistic paradigm will cause performance overhead for issuing useless

2 For example sensor or actuator errors and problems

adaptation. To diminish the run-time uncertainty efficiently, we introduce a Hybrid

Paradigm that depends on a cut-off value, threshold
3
. If, threshold is one then it behaves

pessimistically i.e. an adaptation process is issued whenever the managed system runs

in uncertain state, and when threshold is zero, it behaves optimistically i.e. no adaptation

process is issued. Intuitively, threshold should maintain a value greater than zero and less

than one. An adaptation process is issued only when is less than or equal

 threshold.

6. PROGRESS AND CURRENT STATUS

A prototypical implementation of the solution has been done. This implementation includes the

integration of the CBR engine with utility functions. The implementation also includes the

generative adaptation of the adaptation responses. Moreover, uncertainty analysis and

quantification are provided in this implementation paving the way for handling uncertainty

during run-time. The three dimensions of the uncertainty [28] has been modelled and

implemented.

7. FUTURE DIRECTION AND EVALUATION

For future direction, firstly, we will use a case study to empirically evaluate and validate our

approach. The case study i.e. the managed system should require the self-adaptivity mechanism

that performs well under run-time uncertainty. Secondly, we will evaluate the results of the case

study application. The evaluation will be based on software quality metrics and GQM [29]. We

expect that the experimentation of our solution will provide a positive potential results for both

handling the uncertainty and the complexity of adaptation space. However, we do not have a

clue regarding the response time of the adaptation engine, the results will reveal this issue.

8. CONCLUSION

In this paper, we have presented our theoretical approach for realizing self-adaptivity in

software systems. We started by showing the gabs in the research and the expected

contributions of the research. Also, we have presented details about the solution model and the

used technology, Case-based reasoning. The progress of the work was presented along with the

future directions. This paper ended with our vision of the evaluation process of our solution.

REFERENCES

[1] B. H. Cheng and others, “Software Engineering for Self-Adaptive Systems,”

Springer-Verlag, 2009, pp. 1-26.

[2] M. Salehie and L. Tahvildari, “A Quality-Driven Approach to Enable Decision-

Making in Self-Adaptive Software,” in Companion to the proceedings of the 29th

International Conference on Software Engineering, 2007.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research

challenges,” ACM Transactions on Autonomous and Adaptive Systems (TAAS) ,

2009.

[4] D. Kim and S. Park, “Reinforcement learning-based dynamic adaptation planning

method for architecture-based self-managed software,” in SEAMS '09. ICSE

Workshop on, 2009.

3 This value is defined during configurations time

[5] A. Elkhodary, N. Esfahani and S. Malek, “FUSION: a framework for engineering

self-tuning self-adaptive software systems,” in Proceedings of the 18 ACM

SIGSOFT international symposium, 2010.

[6] M.-H. Karray, C. Ghedira and Z. Maamar, “Towards a Self-Healing Approach to

Sustain Web Services Reliability,” in AINA Workshops'11, 2011.

[7] D. Garlan and others, “Rainbow: architecture-based self-adaptation with reusable

infrastructure,” Computer, pp. 46-54, 2004.

[8] M. Derakhshanmanesh, M. Amoui, G. O'Grady, J. Ebert and L. Tahvildari,

“GRAF: graph-based runtime adaptation framework,” 2011.

[9] T. Vogel and H. Giese, “Adaptation and abstract runtime models,” in Proceedings

of the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-

Managing Systems, 2010.

[10] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey and A. Solberg, “Models@

Run.time to Support Dynamic Adaptation,” Computer, vol. 42, no. 10, pp. 44-51,

#oct# 2009.

[11] N. Khakpour, R. Khosravi, M. Sirjani and S. Jalili, “Formal analysis of policy-

based self-adaptive systems,” 2010.

[12] R. Asadollahi, M. Salehie and L. Tahvildari, “StarMX: A framework for

developing self-managing Java-based systems,” in SEAMS, 2009.

[13] S.-W. Cheng, D. Garlan and B. Schmerl, “Architecture-based self-adaptation in the

presence of multiple objectives,” in Proceedings of the 2006 international

workshop on Self-adaptation and self-managing systems, 2006.

[14] B. Bontchev, D. Vassileva, B. Chavkova and V. Mitev, “Architectural design of a

software engine for adaptation control in the ADOPTA e-learning platform,” 2009.

[15] G. Bertolotti, A. Cristiani, R. Lombardi, M. Ribari , N. Toma evi and M.

Stanojevi , “Self-Adaptive Prototype for Seat Adaption,” in SASOW Fourth IEEE

International Conference, 2010.

[16] M. A. S. Sallem and F. J. da Silva e Silva, “Adapta: a framework for dynamic

reconfiguration of distributed applications,” in Proceedings (ARM '06), 2006.

[17] Q. Yang and others, “Toward a fuzzy control-based approach to design of self-

adaptive software,” in Proce. of the 2nd Asia-Pacific Symposium on Internetware,

2010.

[18] N. Esfahani, E. Kouroshfar and S. Malek, “Taming uncertainty in self-adaptive

software,” in Proceedings of the 19th ACM SIGSOFT symposium and the 13th

European conference on Foundations of software engineering, 2011.

[19] N. C. Narendra and U. Bellur, “A middleware for adaptive service orientation in

pervasive computing environments,” 2010.

[20] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti and R. Mirandola, “Qos-

driven runtime adaptation of service oriented architectures,” 2009.

[21] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola and G. Tamburrelli,

“Dynamic QoS Management and Optimization in Service-Based Systems,” IEEE

Trans. Softw. Eng., vol. 37, no. 3, pp. 387-409, #may# 2011.

[22] Y. Wu, Y. Wu, X. Peng and W. Zhao, “Implementing Self-Adaptive Software

Architecture by Reflective Component Model and Dynamic AOP: A Case Study,”

in QSIC'10, 2010.

[23] H. Liu, M. Parashar and S. Member, “Accord: A Programming Framework for

Autonomic Applications,” IEEE Transactions on Systems, Man and Cybernetics,

Special Issue on Engineering Autonomic Systems, vol. 36, pp. 341-352, 2006.

[24] D. a. I. M. U. a. S. M. a. A. J. Weyns, “Claims and Supporting Evidence for Self-

adaptive Systems : A Literature Study,” in Software Engineering for Adaptive and

Self-Managing Systems, SEAMS, 2012.

[25] A. Stahl, “Learning of Knowledge-Intensive Similarity Measures in CaseBased

Reasoning,” PhD Thesis, 2003.

[26] S. Aksoy and R. M. Haralick, “Probabilistic vs. geometric similarity,” IEEE Conf.

Computer Vision and Pattern Recognition, 2000.

[27] Q. B. a. Q. Y. P. Guo, “Probabilistic similarity measures analysis,” Machine

Learning and Cybernetics,, 2006.

[28] W. Walker and others, “Defining uncertainty: a conceptual basis for uncertainty

management in model-based decision support,” Integrated Assessment, 2003.

[29] R. van Solingen, V. Basili, G. Caldiera and H. D. Rombach, “Goal Question

Metric (GQM) Approach,” in Encyclopedia of Software Engineering, 2002.

[30] W. Wilke and R. Bergmann, “Techniques and Knowledge Used for Adaptation

During Case-Based Problem Solving,” 1998.

[31] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2 ed.,

Pearson Education, 2003.

[32] E. Plaza and J. L. Arcos, “Constructive Adaptation,” in Proceedings of the 6th

European Conference on Advances in Case-Based Reasoning, 2002.

[33] D. W. Aha, “Case-Based Learning Algorithms,” 1991.

[34] A. Aamodt and E. Plaza, “Case-based reasoning; Foundational issues,

methodological variations, and system approaches,” AI COMMUNICATIONS, vol.

7, no. 1, pp. 39-59, 1994.

[35] IBM, “An architectural blueprint for autonomic computing,” IBM Corporation,

2005.

[36] A. a. J. A. a. C. B. H. C. Ramirez, “A taxonomy of uncertainty for dynamically

adaptive systems,” Software Engineering for Adaptive and Self-Managing Systems

(SEAMS), 2012 ICSE, pp. 99-108, 2012.

[37] M. Abufouda, “Quality-Aware Approach for Engineering Self-Adaptive Software

Systems”, International Conference of Foundations of Computer Science & Technology,

2014

Authors

Mohammed Abufouda received the BSc. in Computer Engineering from Islamic University, Palestine in

2006 and the MSc. degree in computer science from Technical University of Kaiserslautern, Germany, in

2013. He is a PhD candidate at Technical University of Kaiserslautern in computer science department.

He is IEEE and ACM student member and his research interests include software engineering and

complex system analysis.

