Visualizing Large and Clustered Networks

Katharina A. Lehmann and Stephan Kottler!

University of Tiibingen, Wilhelm-Schickard-Institute, Sand 14, 72076 Tiibingen,
Germany

Abstract. The need to visualize large and complex networks has strongly
increased in the last decade. Although networks with more than 1000 ver-
tices seem to be prohibitive for a comprehensive layout, real-world networks
exhibit a very inhomogenous edge density that can be harnessed to derive
an aesthetic and structured layout. Here, we will present a heuristic that
finds a spanning tree with a very low average spanner property for the non-
tree edges, the so-called backbone of a network. The complexity status of
finding the optimal backbone is unknown, but very similar problems have
been proven to be NP-hard [7]. This backbone can then be used to either
apply a tree-layout algorithm or to assign weights to every edge and apply
a spring-embedder layout algorithm. Both methods generate very readable
and comprehensive layouts that can additionally be used to cluster the
networks, where the quality of this clustering depends on the time spent
in an optional optimiziation heuristic.

1 Introduction

At first glance it seems prohibitive to visualize large and complex networks. The
idea to represent these networks by suitable spanning trees and draw these trees
instead of the whole graph, is a well-known approach, found, e.g., in [3,9,5]. In
most of these cases it was assumed that the spanning tree was either given by the
user or that the graph to draw was hierarchically organized and thus a spanning
tree could be easily and more or less unambigously derived. Here we will show that
also the visualization of non-hierarchically networks is feasible with a spanning tree
approach if the networks are clustered instead. A network is clustered if it can be
decomposed into dense subgraphs that are only sparsely interconnected. In the
past, this property has been used to analyse protein-protein-interaction networks
or various social networks to find semantically connected subsets of vertices [4, 8].
We will show here, that this property can also be used to find a clear and compu-
tationally feasible layout for clustered graphs with more than 1,000 vertices and
more than 10,000 edges. Actually computing a good partition can be computa-
tionally prohibitive, so our motivation is to decompose the graph into a set of local
edges that are likely to be within clusters and a set of global edges that are likely
to be between clusters. The decomposition into these sets has already been proven
useful for drawing power-law graphs where the decomposition is derived by solv-
ing a network flow problem [1]. Our decomposition technique is based on finding a
spanning tree that minimizes the distances between any two vertices connected by

a non-tree edge, a so-called backbone of the graph. An edge whose endpoints have
a large distance in the tree will be considered a global edge. These so-called tree
distances can then be used to assign preferred edge lengths in a spring-embedder
algorithm, or the tree itself can be drawn with the assumption that short, local
non-tree edges will not induce too many crossings. The complexity status of find-
ing a minimal spanning tree with this respect is yet unknown, but very similar
problems have been shown to be NP-hard [7]. Here, we will present two heuristics
that yield very good initial backbones and an optional optimization step that can
be used to improve the result. Furthermore, we will show that the resulting lay-
outs can also be used to analyze the graph with respect to its clustering structure,
much faster than another visual graph clustering algorithm proposed in [12,11].

The paper is organized as follows: In Sec. 2 the needed definitions are given, the
description of suitable backbones is given in Sec. 3. In Sec. 4 we then present two
approaches to draw a large graph based on backbones and a geometric clustering
algorithm. We finish with a summary in Sec. 5.

2 Definitions

A graph is a pair (V, E) with V the set of vertices and E C V x V the set of
edges, with n := |V| the number of nodes, and m := |E| the number of edges.
We will assume that all graphs are free of self-loops, single-edged, undirected, and
connected. The neighborhood N (v) of a vertex v is given by N (v) := {w|(v,w) € E}
and its degree deg(v) by the cardinality |N (v)| of its neighborhood. A path P(s,t)
between vertices s and ¢ is a set of edges {e1,ea, ..., er} C E such that e; = (s,v1),
er = (vg_1,t), and for all 1 < i < k: e; = (v;_1,v;) € E. The path length of a
path P(s,t) in an unweighted graph is given by the number of edges % in it. The
distance d(s,t) between two vertices s, t is given by the minimal length of any path
between them if existent and oo otherwise. dgr(s,t) denotes the distance of two
vertices using only the edges in E' C E. A graph is a tree if there is exactly one
path between any pair of vertices. A spanning tree T of G is here defined as a
subset of edges that constitutes a tree on V.

The edge-density n(G) of a graph G is defined as n(G) = 2xm/(n* (n—1)) in
the undirected case. A clustering algorithm tries to partition a network into dense
subgraphs that are only sparsely interconnected. Let C = {C; C V,C> C V,...}
with C; N C; = 0 and UcC; = V be a partition of V. Then, the modularity u(C)
measures the clustering quality by the deviation between the number of edges in
these clusters and the expected number of edges in a graph, where each vertex
keeps its degree but all edges are rewired at random [8].

_m(©) 3 ey deg(v))” "
4m?

c
where m’(C') denotes the number of all edges where both endpoints lie within any
of the clusters C;. Note that Equ. 1 is a different but equivalent formulation of the
definition given in [8].

3 The Backbone of Complex Networks

To harness the clustering structure of a large graph for computing a layout, we
will follow two approaches that are both based on finding a good spanning tree of
the graph: Let T be a spanning tree of G that defines weights wr(e) for all edges
e = (v,w) € E(G) in the following way:

wr((v,w)) = dr(v,w) 2)

dr(e) will also be called the tree distance of edge e. The quality Q(T') of a spanning
tree will be measured by the sum of the weights it assigns to the edges:

QD)= Y wle) (3)

e€E(G)\T

The motivation behind this quality measure is that, given a dense cluster of the
graph, Q(T) will in most cases be smallest, if all vertices of this cluster are in
a small and contiguous subtree of T'. Otherwise, all edges between these vertices
would have high tree distance values. In other words, the lower Q(T') is, the more
non-tree edges are 'local’ edges between vertices that are not far away in the tree.
Thus, a spanning tree with a low Q(T') can be called a backbone of the graph since
it represents clusters in a concentrated way. Since trees are planar, the hope is that
most ’local’ edges will also span short distances if they are added to a drawing of
the backbone.

A trivial lower bound for Q(T) is given by 2(m — n + 1). This lower bound
is for example met by a clique if the spanning tree consists of one vertex and all
incident edges. The following procedure computes a non-trivial lower bound that
depends on the structure of the given graph: For every edge e = (v, w) the distance
dp\{e} (v, w) is computed. Let ¥'(G) denote the sum of the m—(n—1) lowest values
of dE\{e} (U, w)

Lemma 1. ¥(G) is a lower bound for Q(T') for any spanning tree T in G.

Proof. Let T* denote an arbitrary spanning tree with minimal Q(T™*). Let e be
one of the n — 1 edges in T*, then its weight does not contribute to Q(T*). If
e = (v,w) is not in T, dr((v,w)) cannot be smaller than dg\ (¢} (v, w). Since we
do not know which edges will be in T*, we disregard the n — 1 highest values of
dp\{e} (v, w) and thus, X'(G) is a lower bound for Q(T™). O

The quality of spanning trees with respect to Q(T") can be very different, a fact
that is shown in Fig. 1. The complexity status of finding the spanning tree with
minimal Q(T) is unknown, but very similar problems as finding the spanning tree
that minimizes the distance of all pairs of vertices u,v € V have been proven to
be NP-hard [7]. Thus, we will now show greedy algorithms that compute reason-
able initial backbones that can subsequently be improved by a local optimization
heuristic.

a)

Fig. 1. The thick lines denote two different spanning trees T for the given graph. Numbers
next to a (dotted) non-tree edge denote the tree distance of this edge. The spanning tree
in a) has a quality Q(T') of 34 and the spanning tree in b) has a Q(T') of 25.

b)

3.1 Computing an Initial Backbone

To construct a backbone, the most simple idea is to choose one vertex at random
and start a breadth first search and to marke the edge by which a vertex is first
explored as tree edge. The quality Q(T') of the resulting backbone is reasonably
good and the tree can be computed in O(m). We will introduce two other methods
that are computationally more involved but yield much better backbones in prac-
tice. Both heuristics grow a spanning tree S incrementally by first choosing the
next vertex v to append to S and then choosing the best edge to hook v into S.
Both start with one vertex chosen at random. With S the set of vertices already
in the tree, let R denote the set of vertices v € G\ S reachable by some vertex
in S. The vertex to append next is the vertex with maximal degree of R, where
ties are broken in favor of the vertex with maximal number of neighbors in S; re-
maining ties are then broken at random. A trivial implementation searches for the
vertex to append in O(n) in every step, yielding a runtime of O(n2) for all steps.
A more sophisticated data structure that keeps vertices in R sorted in a kind of
two-dimensional array of lists, can reduce this runtime to O(n deg*), where deg*
is the maximal degree in the graph. For very large real-world networks this is in
most cases a significant improvement.

In general, the chosen vertex v will have more than one neighbor in S and its
tree edge will connect it to one of them. These neighbors are the possible hooks
of v. Note that by choosing one of the edges to a hook as the tree edge, the tree
distances of all the other possible tree edges are determined. Thus, the first variant,
the minimized inner distance tree, will choose that hook that minimizes the tree
distances of all the other possible tree edges:

Minimized Inner Distance Tree Let S(v) denote the neighbors of the chosen vertex
v in S, i.e., the hooks of v. Since only one of the edges incident to a hook can be a
tree edge without inducing a cycle in 7', it is necessary to choose the one hook h*

.0,

1

K W,) et

Fig. 2. a) Minimized Inner Distance Tree: Entering node v has three hooks h1, ha, hs. ha
minimizes the sum of the tree distances of v’s edges to hi, hs with a sum of 8, and thus
hs is h*. b) The tree distance of v’s edges to w1, w2 can be estimated by determining the
distance of the hooks to these neighbors. It follows that hs has the best sum of distance
to all others: h1 =4, ho =3, w1 =5, w2 = 1.

that minimizes the tree distances of all the other edges to hooks. Thus, for every
hook the distance to all other hooks is summed up and the edge to the hook with
the minimal distance to all other hooks is chosen as new tree edge (Fig. 2 a).

By holding an array D(T) of size n? that keeps the distance dr(s,t) for all
vertices s,t in S, this computation can be done in O((deg*)?). After the best
hook h* has been chosen, this data structure has to be updated by adding the
distances dr (v, w) between the newly added vertex v and all other vertices w in
S to D(T). Since dy(v,w) = dr(h,w) + 1 for all w € S, this can be done in O(n).
Thus, the entire runtime to construct a minimized inner distance tree is given by
O(n(deg*)? +n?).

Lemma 2. A minimized inner distance tree for some randomly chosen root node
can be computed in O(n(deg*)? + n?).

While this tree only regards those (inner) edges to other vertices in S, the next
one tries to estimate the tree distance of the other edges of e as well:

Minimized Entire Distance Tree Let again S(v) denote the neighbors of the chosen
vertex v in S, and N (v) denote the full neighborhood of v in G. For those edges
of v that do not lead directly to vertices in S, it is hard to estimate their tree
distance: It could be that they will later choose v as their hook to the growing
tree and in this case an edge will not contribute to Q(T'). Since it is unlikely that
all of them will use the edge to v as their tree edge, it would be good to choose a
hook h* such that all neighbors of v have a short alternative path to it. With this
intuition, we will choose the hook h* € S(v) that minimizes the following sum:

> deymwuss) (b, w) (4)

weN(v)

where Eg denotes the set of edges between vertices of S that do not belong to the
tree. In other words, we determine the distance of every hook to all neighbors of

v by using only the tree edges and the edges of vertices that are not yet explored
by S. The idea behind this is to estimate the distance from every neighbor to the
tree in S if it is not allowed to connect to the tree via v. Note that the sum in
Equ. 4 contains also the sum of the inner distances and thus the name of the tree
is justified. A summary of the attachment procedure hookInto Tree(E, T, Es,v) is
given in Algorithm 0.1.

1: function HOOKINTOTREE(E, T, Es,v)

2: min < oo, H* + ()

3: for all h € S(v) do

4 start BF'S at h considering only edges € E \ (Es U E(v))
5: to compute dp\ (gup))(h,u) Vu eV
6: S EwEN(v)dE\(ESUE(v))(h’w

7: if (s < min) then H" < {h}, min + s
8: else if (s = min) then H* + H* U {h}
9: end for

10: h™ < h € H* at random

11: T+ TU(h",v)

12: Es +— EsU{(v,w) |lwe Sv)\r"}

13: end function

Algorithm 0.1. Minimized Entire Distance Tree

This computation can be done by computing the distance of all vertices to every
hook of v which can be accomplished in O(m deg*). It follows that a minimized
entire distance tree can be computed in O(nm deg*).

Lemma 3. A minimized entire distance tree for some randomly chosen root can
be computed in O(n deg*m).

Table 1 shows a comparison of Q(T') of all three presented trees for some
real-world networks. It is clearly visible that the higher computational effort for
minimized inner distance and minimized entire distance trees results in much bet-
ter backbones than the simple BFS tree and come near to the lower bound given
by X(G).

However, even a good initial backbone can still be improved by the following
optimization heuristic.

3.2 Optimization of the Backbone

The following steps allow for a local optimization of the initially computed back-
bone T'. The main idea is that any edge e that is not in 7" would induce a cycle
if it was added to T'. By removing any other edge f of this cycle, a new spanning
tree T'(e, f) := (T U e)\ f results. If no ambiguity is given we will reduce T"(e, f)
to T" in the following. If Q(T") is smaller than Q(T'), than e should replace f in T
We will call e the entering edge and f the leaving edge. To analyze whether Q(T")

Graph n m BFS Minimized | Minimized | ¥'(G)
Inner Entire
Distance Distance

Amazon recommen-| 3,437 (9,671 | 31,984 + 792 | 21,608 + 67 | 20,643 £+ 51 |12, 468
dation network 1

Live Journal 3,763 |11,149|29,382 4+ 1,027(23, 220 + 108| 22,029 + 42 |14, 774
Co-Authorship 12,357(19,448|57,045 + 1,973|52, 323 + 300(|50, 259 + 128(14, 184
Network

Table 1. For every network, 10 instances of every kind of spanning tree were computed.
Displayed is the average Q(7) and the deviation. Note, that the best spanning trees
have a quality that is close to the lower bound given by X(G). For a description of the
networks s. Subsec. 4.3

is smaller than Q(T), the following definitions are helpful: Let e be any non-tree
edge, then Pr(e) denotes the path in T that connects the end vertices of e, the
so-called tree path of e.

Proposition 4. For all non-tree edges i with f & Pr(i), dr(i) will not be changed.

Proof. Since all edges of Pr(i) are still in T, dr(i) cannot be increased. Let’s
assume that dr(7) is decreased by the insertion of e. This means that there is a
second path connecting the end vertices of i, violating the tree property of T. O

Let 7 denote some non-tree edge whose tree path contains at least one of the edges
of Pr(e), and let Cr(i,e) denote the set of shared edges:
Cr(i,e) := Pr(i) N Pr(e) (5)
If the leaving edge f is in this set, the tree path of ¢ will be altered. To describe
the change, the following definitions are needed (Fig. 3 a): Let Cr(e) denote all
edges in the cycle that is introduced by adding e to T. Note that Cr(e) is given by
Pr(e)u{e}. Let Cr(i,€) denote that half of the cycle Cr(e) that is the complement
of Cr(i,e). The new tree path Py (i) is then given by

PTI (Z) = PT(’L) U CT(i,e) \C’T(i,e). (6)

Note that this new tree path is always the same, independent of the identity of the
leaving edge f aslong as f € Cr(i,e) (s. Fig. 3 b). Thus, Adr(i,e) := dr (i) —dr (i)
is given by:

Adr(i,e) = |Cr(ise)| — |Cr(ise)|
=|Cr(e)| = 2|Cr(i,e)|

(7)
®)

With I, (f) denoting the set of non-tree edges ¢ with f € Cr(i,e), we can now
state the following lemma:

Fig. 3. a) e is the entering edge, the tree paths Pr(e) and Pr(¢) of some other non-tree
edge 7 are indicated by the dotted arrows. Every non-tree edge i with Cr(i,e) # @ will
have to change its tree path if the leaving edge is element of Cr(¢,e). The new tree
path is built by removing from the old tree path all edges from Cr(i,e) and adding
the complement of the circle, i.e., Cr(i,e), to it.b) Again, e is the entering edge, 7; are
edges that could be affected by choosing some of the possible leaving edges f;. The boxed
numbers give the difference between the new and old tree distance. It follows that for
entering edge e, f2, f3, or f4 would yield the best optimization with a value of AQ(T e, f)
of —9.

Lemma 5. For fized entering edge e and leaving edge f, the difference in Q(T)
denoted by AQ(T, e, f) can be computed by:

AQ(Taeaf) = Z AdT(i7e7 f) (9)
i€l (f)

A(Q(T,e, f)) can be computed efficiently by first determining the set I(e) =
Usepr(e)le(f) of all edges i that are depending on at least one edge of Cr(e)
in their tree path. This can be done very efficiently if every tree edge f stores
I.(f) in a bit map. A bit map allows space and time efficient set operations, e.g.,
conjunctions and disjunctions. With at most n sets I.(f), the set I(e) can be
computed in O(nm). The tree path Pr(7) of every non-tree edge ¢ is also stored as
bits in a bit map. By simple OR—, XOR—, and AN D-Operations all required sets
Cr(i,e), Cr(i,e), and Adr(i,e) can be computed in O(m) for a single non-tree
edge i and in O(m?) for all of them. The leaving edge is the edge f with minimal
AQ(T,e, f), which can be computed in O(nm) where ties are broken at random.
If there is now leaving edge because all resulting trees 7" would be worse, nothing
will happen and the next entering edge e is chosen at random. A summary of this
algorithm is given in Algorithm 0.2.

After e and f have been chosen in this way, some updates have to be done that
are also computed very efficiently by operations on the bit maps. These updates
can then be computed in O(m?).

Lemma 6. A single local optimization step can be computed in O(m?).

1: function OPTIMIZATIONSTEP(E, T, ¢)

2: Cr(e) + Pr(e) U {e}

3t I(e) ¢ Usepp(e)le(f)

4 for all i € I(e) do

5: Ad(i,e) + |Cr(e)] — 2 % |Pr(i) N Cr(e)|
6: end for

7 B + {e},min <+ 0

8: for all f € Cr(e) do

9: s« 0
10: for all i € I.(f) do
11: s <+ Ad(i,e)
12: end for
13: if (s < min) then B «+ {f},min < s
14: else if (s = min) then B + BU {f}
15: end for
16: return b € B at random

17: end function

Algorithm 0.2. Local Tree Optimization

4 Using the Backbone for Layouts and Clustering

As indicated above, a good backbone will try to concentrate the vertices of any
cluster on a small, connected subtree. By doing so, the tree also indicates that edges
with a high tree distance are more likely to be inter-cluster edges. These properties
of the backbone can be used for both, computing a layout and subsequently use
this layout for clustering the graph.

4.1 Backbone based layouts
There are two main ideas to use a good backbone for creating a drawing:

1. The tree distances can be used as preferred edge lengths in a spring embedder
layout as described in [6].

2. The layout of the graph can be computed by a variation of the balloon tree
layout [3], a drawing which we will call a backbone balloon drawing. In the
original balloon drawing of a tree, every subtree is enclosed entirely in a circle
that is positioned in a wedge whose end-point is the parent node of this subtree.
The radius of each circle is proportional to the number of vertices in the
subtree.

The first variant is straightforward to implement and the results are reasonable
for very clustered of limited size (Fig. 5). However, it turned out that the resulting
layouts are not helpful for graphs with more than 1000 vertices and 8000 edges.
The second variant is a bit more involved. The basic idea is to use the backbone
and compute a balloon drawing for it and re-insert all non-tree edges as straight
lines. To make this drawing a good drawing for the whole graph, the only pa-
rameter to change is the order of the children of any vertex in the tree. Since all

direct neighbors of any vertex in the tree are positioned in a circle, the order of
these children can be determined by a variation of the algorithm for crossing re-
duction in circular layouts [2]. The original algorithm is composed of two phases:
In the first phase an initial ordering is heuristically determined. This is optimized
by subsequent rounds of local sifting, where each vertex can try to improve the
number of crossing by changing its position in the order computed so far. The
application of this algorithm in a backbone balloon drawing requires the following
two modifications:

1. Every edge between the children of a vertex in the tree can not only cross
with each other, but also with the spokes, i.e., the edges from the father to its
children. This changes the computation of the resulting number of crossings
slightly.

2. Let T'(v) and T'(w) denote the subtrees rooted at v and w, respectively, and let
v and w be children of the same vertex. If the number of edges between these
subtrees is large, then v and w should be close in the resulting order which is
of course not regarded in the original algorithm.

The second point can be dealt with by introducing additional edges between any
two children v, w whose subtrees are connected by edges. Additionally, all edges
will be assigned weights that present the number of edges between T'(v) and T'(w).
The weight of a crossing between two edges is now given by the sum of the weights
of the crossing edges, and the optimization goal is now to minimize the sum of
the weights of all crossings and not to minimize the number of crossings. The
weights of all the edges between any two children can be computed in O(nm).
Every round of local sifting in a given circle with at most deg* vertices can be
computed in O((deg*)?) as shown in [2]. Since there are at most n circles in the
drawing, this sums up to O(n(deg*)?) which is the largest factor in computing the
backbone balloon drawing.

4.2 Geometric Graph Clustering

A second application of the backbone based drawing is a faster variant of the
Girvan-Neman clustering [8]. Their algorithm removes subsequently all edges with
highest betweenness centrality and measures the modularity of the arising par-
tition. After having removed all edge, the partition with highest modularity is
restored. This algorithm has a runtime of O(nm?) in undirected graphs. Our vari-
ant assumes that long edges of the drawing are more likely to be between clusters.
The algorithm thus removes the edges in a non-decreasing order of their length and
computes the modularity after each step. Edges with the same length are removed
in the same step. The graph with maximal modularity is afterwards restored.

Lemma 7. A geometric graph clustering can be computed in O(m?).

This algorithm is faster than the Girvan-Newman approach by a factor of n and
yields similar results with respect to the modularity.

4.3 Experiments

We have used the above presented variants of classic drawings for different types of
networks: The first type of network is a so-called Amazon recommendation network.
To derive it, we start at some book that is offered by the Internet bookshop
www.amazon.com and follow the links presented under the title ” customers who
bought this book also bought”. By recursively following these links, very large
and complex networks can be created. By construction, the outdegree of every
vertex in the network is bounded by 6. The first starts at [10], the second at
[14]. A second type of network was created by crawling the links to ’friends’ in a
blogger community on www.livejournal.com. The third type of network presents a
co-authorship network derived by Vicsek et al [13].

Fig. 4 gives a showcase for the improvements of Q(T) by the optimization
heuristic. It is clearly visible that the time spent in this step is worth the effort.

7000 r :
BFS +
Inner Distance %
Entire Distance

6500 -

6000 -

5500 [+

x
5000 |- %,
X, e
. +
* XXXXXXX;;;;+++++++H
R KRS O RIS RSII IR AR RRIIRI A4+ 444
SRR IR KR AR K AHAK K K A K

™

4500

L L L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Fig. 4. For Amazon recommendation network 2, one BFS, one minimized inner distance
and one minimized entire distance tree was computed and improved by the optimization
heuristic until no further improvements could be found, i.e., a local minimum is reached.
The trees start and end with the following Q(T')’s: 6572/4641 (BFS), 5385/4734 (Inner),
and 5085/4662 (Entire), respectively. Note that X(G) is 3822.

All drawings in the appendix are based on a minimized entire distance tree,
optimized until a local minimum is reached. The varied spring embeddder draw-
ing is only shown for a small amazon recommendation network (n=851, m=4110)
(Fig. 5), whereas the varied balloon drawing makes quite nice and clear layouts for
graphs up to 12,357 vertices and 19,000 edges, shown in the appendix. To show
that the visualization will really place vertices in the same cluster geographically
near to each other, the well-known Girvan-Newman clustering algorithm has been
applied to one of the drawings [8]. To see the cluster structure revealed by this
algorithm, vertices from the same cluster have been assigned the same color. It is
clearly visible in the coloured Fig. 10 that most clusters are in a geographically
contiguous area that does not intersect with the area of other clusters. This in-

dicates that the new drawing can also be used as a means of visual data mining
to find clusters in a complex network as shown by a geometric clustering in Fig.
11. Such an application justifies the computational consuming local optimization
steps.

5 Summary

In this paper we presented a new quality measure Q(T') for a spanning tree that
helps to visualize large and clustered networks. We have shown that spanning
trees with a low Q(T') can be computed in reasonable time and that these can be
improved further by a local optimization heuristic. These trees or backbones can
then be used to derive variations of classic layouts that are suitable for clustered
graphs. If the backbone is optimized before the drawing is computed, the drawing
can also be used to analyze the graph with respect to its clustering structure
by a fast geometric clustering approach. Further work will have to show whether
backbones can also be used to adapt other drawings, such as the hierarchical
Sugiyama drawing.

References

1. Reid Andersen, Fan Chung, and Linyuan Lu. Drawing power law graphs. In Proceedings of the
12th Symposium on Graph Drawing (GD’04), 2004.

2. Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In Proceedings of the
30th Workshop on Graph-Theoretic Concepts in Computer Science (WG’04), 2004.

3. J. Carriére and R. Kazman. Interacting with huge hierarchies: Beyond cone trees. In Proceedings
of the ACM conference on Information Visualization 1995, pages 74-81, 1995.

4. L. Derényi, G. Palla, and T. Vicsek. Clique percolation in random networks. Phys. Rev. Lett.,
94:160202, 2005.

5. Jean-Daniel Fekete, David Wang, Niem Dang, Aleks Aris, and Catherine Plaisant. Overlaying
graph links on treemaps. In Proceedings of the IEEE Symposium on Information Visualization
(InfoVis’03), 2003.

6. T.M.J. Fruchtermann and E.M. Reingold. Graph drawing by force-directed placement. Software
- Practice and Ezperience, 21(11):1129-1164, 1991.

7. Michael R. Garey and David S. Johnson. Computers and Intractability. W.H. Freeman and
Company, New York, 1979.

8. Michelle Girvan and M.E.J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99:7821-7826, 2002.

9. Ivan Herman, Guy Melancon, Maurice M. de Ruiter, and Maylis Delest. Lecture Notes in Com-
puter Science, chapter Latour - A Tree Visualization System, page 392ff. Springer Verlag, Berlin,
2000.

10. Mark Newman, Albert-Laszlo Barabasi, and Duncan J. Watts. The Structure and Dynamics of
Networks. Princeton University Press, 2006.

11. Andreas Noack. An energy model for visual graph clustering. In Proceedings of the 11th Inter-
national Symposium on Graph Drawing (GD’03), 2004.

12. Andreas Noack. Energy-based clustering of graphs with nonuniform degrees. In Proceedings of
the 13th International Symposium on Graph Drawing (GD’05), 2005.

13. G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure
of complex networks in nature and society. Nature, 435:814, 2005.

14. J. K. Rowling. Harry Potter and the Half-Blood Prince. Scholastic, Inc., 2005.

6 Appendix

This section contains some whole page-drawings of graphs with more than 500
vertices and 7,000 edges.

Fig. 5. A spring-embedder layout of Amazon recommendation network 2 (starting at [14],
following links provided under the title ’customers who bought this book also bought’)
with 851 vertices and 4, 110 edges where the preferred edge lengths were proportional to
the tree distances of an edge.

Fig. 6. A backbone balloon drawing of the same Amazon recommendation network as in
Fig. 5 with 851 vertices and 4,110 edges.

Fig. 7. A backbone balloon drawing of an Amazon recommendation network 1 (starting
at [10], following links provided under the title ’customers who bought this book also
bought’) with 3,437 vertices and 14, 185 edges.

Fig. 8. A backbone balloon drawing of a social network, derived from the blogging com-
munity LiveJournal. Two bloggers are connected by an edge if at least one declares the
other to be a friend. The graph contains 3, 763 vertices and 11, 149 edges.

Fig. 9. A backbone balloon drawing of a co-authorship network [13]. Vertices represent
authors and two vertices are connected if the corresponding authors have written at least
one paper together. The graph contains 12, 357 vertices, and normally 19, 448 edges. Here
we only show all edges with a tree distance up to 8, which results in 18,031 edges, i.e.,
92% of all edges.

Fig. 10. The spring-embedder drawing of Fig. 5, clustered by the Girvan-Newman al-
gorithm. Edges between clusters are removed, and vertices of the same cluster have the
same color. The modularity of this partition is 0.899. This clustering algorithm removes
edges in the non-decreasing order of their betweenness centrality, assuming that edges
with a high betweenness centrality are more likely to be between clusters.

Fig.11. A geometric clustering of the same drawing with a modularity of 0.79. Here,
edges are removed in the non-decreasing order of their length in the drawing.

