
On Local Behavior and Global Structures in the Evolution of

Complex Networks

Dissertation
der Fakultät für Informations- und Kognitionswissenschaften

der Eberhard-Karls-Universität Tübingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von
Katharina A. Zweig, geb. Lehmann

aus Hamburg

Tübingen

2007

Tag der mündlichen Qualifikation: 18.7.2007
Dekan: Prof. Dr. Michael Diehl
1. Berichterstatter: Prof. Dr. Michael Kaufmann
2. Berichterstatter: Prof. Dr. Roger Wattenhofer, ETH Zürich
3. Berichterstatter: Prof. Dr. Tamás Vicsek, Eötvös Lórand University, Budapest

3

This work is dedicated to my parents, Ursula Lehmann-Buss and
Peter-Hannes Lehmann, who always supported me in everything

I did, and Winfried Zweig, who is all to me.

CONTENTS

1. Acknowledgement . 6

2. Introduction . 10

2.1 Complex Networks in Complex Systems Science . 10

2.2 Network Modeling - An Approach to Reduce Complexity
in Complex Systems . 17

2.3 Computer Science and Complex Network Science 19

2.4 Overview . 23

3. Definitions . 25

3.1 Sets . 25

3.2 Graphs . 25

3.3 Partition . 26

3.4 Graph Families . 26

3.5 Spanning and Minimal Spanning Trees . 28

3.6 Isomorphism . 28

3.7 Stochastic Processes . 28

3.8 Complexity . 29

4. The Small–World Phenomenon . 30

4.1 The Classic Small–World Network Model . 30

4.2 Finding a General Definition of Small–World Network Models: The Dependency
Between Regularity, Locality, and a High Clustering Coefficient 34

4.3 Hybrid Graphs Showing the Small–World Phenomenon 46

4.4 Summary . 57

5. Network–Generating Systems and Processes . 59

5.1 Network–Generating Systems: Processes vs. Structural Properties 60

5.2 Bounding the Number of Random Edges in a Graph 66

Contents 5

5.3 The Relative and Absolute Tree Distance Distribution of Real–World Networks . . 71

5.4 A Quality Measure for Spanning Trees . 80

5.5 BFS Trees as an Approximation of Optimal Backbones 86

5.6 Problems Related to Finding the Optimal Backbone 92

5.7 Local Optimization of the Backbone . 95

5.8 Visualization of Large and Complex Networks with Heuristically Optimized Backbones100

5.9 Summary . 102

6. The Principle of Locality in the Evolution of Complex Networks 107

6.1 Observing, Modeling, and Analyzing Dynamic Networks 108

6.2 Evolution of Complex Networks . 113

6.3 A Generalized Evolutionary Network Model for Singular Networks 118

6.4 The Design of Efficient Changing Rules - A First Example 123

6.5 Reducing the Number of Edges in an Ad-Hoc Communication Network 134

6.6 Self-Adapting Network Structures for Peer-to-Peer Networks in Random Failure and
Attack Scenarios . 137

6.7 Summary . 146

7. Summary . 147

8. Data . 162

8.1 Data sets . 162

9. Publications . 164

9.1 Graph Drawing . 164

9.2 Centrality Indices . 164

9.3 Sensor Networks and Peer-to-Peer Systems . 165

9.4 Network and Structural Analysis of SAT problems 165

9.5 C-max Tolerance Graphs . 166

1. ACKNOWLEDGEMENT

I loved the time of scientific research, and the freedom I was given to explore whatever topic I liked
in my graduate studies. However, the last few months of this time were overshadowed by fears
whether the work is adequate and sheds at least some light on an interesting topic. In this time,
many of my friends, my family, and my fiance Winni have supported me with all of their love.
Thus, I want to thank my family and Winni for their never-ending prayers and care. Winni has
done everything one can do, from listening to alien mathematical problems, to providing excellent
food and endless coffee supply, and enduring my nervousness. I also want to thank my second
family, Familie Zweig, who heartily welcomed me in their family, and I am happy to be Katharina
Zweig in only a few weeks!

The work that is presented in this thesis is inspired by numerous works of others, and often worked
out in collaboration with others due to the interdisciplinarity of the field. I want to thank all of my
co-authors for our journey into the world of complex systems. Among these the most prominent
is of course my advisor, Michael Kaufmann, who was willing to let me go into this adventure in
a land of the unknown for both of us, with lots of drawbacks until we found the niche in which
this new kind of computer scientist based network analysis was welcomed. I am grateful to have
been part of the DFG SPP 1126, a strong community of mostly computer scientists concerned
with new aspects of algorithms on complex networks with annual, fruitful meetings. Thanks to
my colleagues, Martin Siebenhaller for all the fun and ”Ha!”, Markus Geyer for his humor and
the long hours sitting on an—up to now—untractable problem. Thanks to the students that took
part in the work, Hendrik Post (Small Worlds), Sonja Boldt (Simulation of Complex Networks),
Karin Zimmermann (Robustness of Networks), Jan Vitense (Network Analysis), Andreas Gerasch
(Amazon Crawler), Volker Menrad and Stephan Kottler (Backbones), Valentin Schwamberger
(Clustering Algorithms), Ulrike Schöck (c-max Tolerance Graphs), and to my ’Dynamics of Com-
plex Networks’-reading group, Michael, Timo, and Martin. In summary, all our students, the
colleagues, and Michael as the head of the group have provided a beautiful working environment
with lots of laughter, thank all of you! Thanks also to Marc Begin who has read and corrected,
always with a sense of humor, my English (remaining mistakes ’go on my cap’, as we say ;-)).

Starting as a biochemist in 1996, I am grateful to this day that I discovered that computer sci-
entists are actually paid for solving the mysteries of mathematics and nature I had always been
interested in. I thank God for this beautiful life of mine.

ZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit netzwerkerzeugenden Prozessen in komplexen Systemen und ihrer
Bedeutung für die Struktur des resultierenden Netzwerkes.
Beginnend 1998 mit einem Artikel von Duncan Watts und Steven Strogatz über sogenannte
Kleinwelten [242], haben sich Wissenschaftler aus dem Gebiet der Analyse komplexer Systeme
zunehmend mit der empirischen Untersuchung von realen Netzwerken beschäftigt. In vielen Pub-
likationen konnte gezeigt werden, dass sich diese realen Netzwerke, also beispielsweise das Internet,
das soziale Netzwerk bestehend aus Verwandten, Bekannten und Kollegen aller Menschen, aber
auch biologische Netzwerke wie beispielsweise das Netzwerk von miteinander interagierenden Hor-
monen im menschlichen Körper, in ihrer Struktur stark von den bis 1998 hauptsächlich verwendeten
Netzwerkmodellen, den sogenannten Zufallsgraphen, unterscheiden. Im Zuge dieser Untersuchun-
gen wurden zahlreiche strukturelle Maße eingeführt, deren Werte in realen Netzwerken stark von
denen in den genannten Modellen abweichen, selbst wenn die Anzahl der Knoten und Kanten in
dem zu untersuchenden Netzwerk und dem Modellnetzwerk gleich sind. Zu diesen Maßen gehören
der Clusteringkoeffizient [242], die Gradverteilung [21] und die Assortativität [177], um nur die
bekanntesten zu nennen. Es wurde in verschiedenen Publikationen nahegelegt, dass Netzwerke
mit den gleichen strukturellen Eigenschaften vermutlich auch durch den gleichen Prozess erzeugt
wurden: so wurde beispielsweise für die Kleinwelten, die gleichzeitig einen hohen Clusteringko-
effizienten und einen kleinen Durchmesser aufweisen, von Watts und Strogatz ein einfacher Neu-
verdrahtungsprozess vorgeschlagen, der aus einem gitterähnlichen Netzwerk einen Graphen mit
den Kleinwelt-Eigenschaften herstellt; für die sogenannten skalenfreien Netzwerke, in denen die
Wahrscheinlichkeit P (k) einen Knoten mit Grad k zu finden proportional zu k−γ ist, wurde der
preferential attachment-Prozess vorgeschlagen, der zu Netzwerken mit ebendieser Gradverteilung
führt [21]. Für die meisten Netzwerke ist es schwierig zu verifizieren, ob sie wirklich mit einem
der genannten Prozesse erzeugt wurden, für das preferential attachment-Modell konnte es aber
für die Entwicklung des Internets gezeigt werden [254]. Es wurden teilweise aber auch Prozesse
vorgeschlagen, die zwar zu einem Netzwerk mit einer gewünschten Struktur führen können, die aber
ganz offensichtlich in dem System, das zu dem zu analysierenden Netzwerk geführt hat, niemals
abgelaufen sein können. Zu diesen Modellen gehört beispielsweise der von Ravasz et al. vorgeschla-
gene Prozess zur Modellierung der Evolution von metabolischen Netzwerken [201]. Die vorliegende
Arbeit stellt die These auf, dass der netzwerkerzeugende Prozess für das Verständnis komplexer
Netzwerke von großer Bedeutung ist, und zwar hauptsächlich wegen folgender Aspekte:

1. In den letzten Jahren wurden von Informatikern, Soziologen und anderen Wissenschaftlern
verschiedene analytische Algorithmen entwickelt, die durch Analyse eines komplexen Netz-
werkes eine Aussage über ein durch es beschriebenes komplexes System treffen sollen. Zu
diesen Algorithmen gehören insbesondere die Berechnung von sogenannten Zentralitätsindizes
und die Berechnung von Clustern, das sind dichte Teilgraphen, in denen die Knoten stark
miteinander vernetzt sind. Diese Algorithmen haben einen bestimmten Kontext, in dem sie
angewandt werden dürfen, nämlich nur dann, wenn die meisten Kanten eines komplexen Net-
zwerkes nicht-zufällig erstellt sind, sondern bevorzugt solche Objekte miteinander verbinden,

1. Acknowledgement 8

die in einer klaren Beziehung zueinander stehen. Stellt sich also heraus, dass ein Netzwerk zu
50% aus zufällig vorhandenen Kanten zusammensetzt, ist die Anwendung solcher analytis-
cher Algorithmen nicht mehr angeraten. Die Frage, ob diese Art von netzwerkanalytischen
Algorithmen auf ein gegebenes Netzwerk angewendet werden darf, kann also nur dann geklärt
werden, wenn der netzwerkerzeugende Prozess bekannt ist.

2. Wir postulieren, dass in der Informatik in den nächsten Jahrzehnten Soft- und Hardware für
solche Kommunikationsnetzwerke entwickelt werden müssen, die sich aus mehreren autarken
und egoistischen Akteuren zusammensetzen, sei es im Bereich Sensornetzwerke [49], Peer-to-
Peer-Netzwerke [224] oder dem Internet. Diese Akteure können nicht zu einer bestimmten,
für alle im Netzwerk befindlichen Teilnehmer günstigen Handlungsweise gezwungen werden;
stattdessen müssen wir annehmen, dass diese Akteure immer versuchen werden, das Netzwerk
durch das Knüpfen neuer und das Löschen alter Kanten in einer für sie selbst im Moment
günstigen Weise zu verändern. Um ein solches komplexes System aus egoistischen und teil-
weise auch für den Gesamtzusammenhang und die langfristige Entwicklung blinden Akteuren
trotzdem steuern zu können, ist es notwendig, die Beweggründe der Akteure zu verstehen,
und ihnen dann im Gesamtsystem Anreize zu bieten, die automatisch das für alle günstigste
Verhalten belohnen und damit fördern. Hier ist es also notwendig, den netzwerkerzeugenden
Prozess im Gesamtsystem zu verstehen, und dann die richtigen Anreize zu liefern, so dass
das lokale Verhalten der Akteure eine global erwünschte Struktur erzeugt.

In dieser Arbeit haben wir uns mit den folgenden Aspekten von strukturbildenden, netzwerkerzeu-
genden Prozessen beschäftigt:

1. In Kapitel 2 geben wir eine Einleitung in die Themen der Arbeit und einen Überblick über die
bisher publizierten Resultate im Bereich komplexe Systeme, Netzwerkanalyse und komplexe
Netzwerke, soweit sie für das Verständnis der Arbeit notwendig sind. Dieses Kapitel wird
gefolgt von allgemeinen mathematischen Definitionen im Kapitel 3.

2. In Kapitel 4 beschäftigen wir uns mit einem allgemeinen netzwerkerzeugenden Prozess, der
die oben genannten Kleinwelten produziert. Dazu haben wir aus den bisher anerkannten
Kleinwelt-Modellen, die alle auf leicht unterschiedlichen Definitionen dieser Netzwerkfamilie
basieren, eine gemeinsame Basis extrahiert, das von uns sogenannte Kleinweltphänomen. Für
die Familie von Netzwerken, die dieses Phänomen zeigt, beschreiben wir dann ein allgemeines
Netzwerkmodell, das es dem Designer von Netzwerken ermöglicht Kleinwelten mit weiteren
gewünschten strukturellen Eigenschaften flexibel zu gestalten. Der wichtigste Aspekt dieser
Teil der Arbeit ist, dass wir die maximale Anzahl von Zufallskanten, die nötig sind um den
Kleinweltcharakter zu erhalten, in diesem Modell leicht berechnen können.

3. Das in Kapitel 4 entwickelte Modell weicht von anderen Kleinweltmodellen insofern ab, als
dass wir für einzelne reale Netzwerke keine Aussage darüber treffen können, ob sie Kleinwelten
sind oder nicht, sondern nur für netzwerkerzeugende Prozesse darüber urteilen können, ob sie
Netzwerke mit Kleinweltcharakter generieren oder nicht. In Kapitel 5 führen wir daher den
Begriff des netzwerkerzeugenden Systems und des ihm innewohnenden netzwerkerzeugenden
Prozesses ein. Die Kleinweltenmodelle, die in Kapitel 4 eingeführt wurden, gehen davon aus,
dass die meisten realen Netzwerke zumindestens teilweise von einem Zufallsprozess erzeugt
werden. In Kapitel 5 präsentieren wir eine neue Technik, mit der der maximale Anteil von
zufälligen Kanten beschränkt werden kann, und wir zeigen an mehreren realen Netzwerken,
dass dieser Anteil sehr unterschiedlich groß sein kann. Interessanterweise zeigt diese Technik
auch, dass reale Netzwerke eine Struktur haben, die für verschiedene theoretische Probleme,
beispielsweise die Berechnung von Zeitplänen [159] oder beim Lösen einer bestimmten Art

1. Acknowledgement 9

von linearen Gleichungssystemen [222], eine bessere worst-case-Laufzeit garantiert. Unseres
Wissens ist dies die erste bekannte Struktur von realen Netzwerken, die die Laufzeiten von
Algorithmen verbessert, und wir hoffen, dass diese Entdeckung zu weiteren effizienten Algo-
rithmen auf realen Netzwerken führt. Die Technik basiert darauf, in dem gegebenen Graphen
einen Spannbaum zu finden, so dass auch die Knoten derjenigen Kanten, die nicht Teil des
Spannbaums sind, in dem gegebenen Baum nur eine kleine Distanz haben, so dass also die
durchschnittliche Distanz aller Knoten, die im Gesamtgraphen durch eine Kante miteinander
verbunden sind, auch im Spannbaum klein ist. Wir werden zeigen, dass es NP-hart ist, den
nach diesem Kriterium optimalen Baum zu finden, daher werden wir Heuristiken vorstellen,
die zumindestens in den von uns untersuchten realen Netzwerken zufriedenstellende Ergeb-
nisse liefern. In einem letzten Abschnitt dieses Kapitels werden wir kurz skizzieren, wie wir
mit Hilfe eines heuristisch optimierten Spannbaumes reale Netzwerke mit mehr als 1.000
Knoten visualisieren, um mehr über die Struktur dieser Netzwerke zu lernen.

4. Kapitel 6 greift dann die oben skizzierte Idee auf, dass sich die Informatik in den nächsten
Jahren viel mit dem Design von komplexen Kommunikationsnetzwerken beschäftigen wird,
in denen keine direkte Kontrolle auf das Verhalten der einzelnen Akteure ausgeübt werden
kann. Wir beschäftigen uns in diesem Gebiet vor allen Dingen mit grundlegenden Fragen,
nämlich zuerst mit einem allgemeinen Modell für die Evolution solcher Netzwerke. Da sich
schon viele verschiedene Gebiete mit der Frage nach netzwerkerzeugenden Prozessen und
deren Modellierung beschäftigt haben, stellen wir hier die wichtigsten dieser Modelle vor,
und kombinieren sie zu einem allgemeinen Modell für die Erzeugung der von uns sogenan-
nten singulären, selbstzentrierten und selbst-organisierten Netzwerke. Wir zeigen an einem
Beispiel, dass die Entwicklung von netzwerkerzeugenden Prozessen für diese Netzwerke sehr
schwierig sein kann, da unter Umständen die genaue Formulierung einer netzwerkbildenden
Regel den Unterschied zwischen einer exponentiellen und einer polynomiellen Laufzeit bis die
gewünschte Netzwerkstruktur erreicht ist ausmachen kann. Wir zeigen aber auch, dass diese
selbstzentrierten Netzwerke, in denen kein Akteur einen globalen Überblick hat, in der Lage
ist, zwischen zwei globalen Netzwerkstrukturen nach Bedarf zu wechseln, nämlich solchen mit
einer Gradverteilung die Poisson-verteilt ist, und einer skalenfreien Gradverteilung. Während
erstere Struktur in einem normalen Szenario von Vorteil ist, in dem die bestvernetzten Ak-
teure gezielt attackiert werden, ist die zweitere Struktur immer dann von Vorteil, wenn
Akteure nur zufällig ausfallen. Wir zeigen, dass auch diese dezentralen, lokalen Netzwerke
ihre Struktur je nach Szenario wechseln können, wenn sie sich in einem Netzwerk befinden,
dass es erlaubt, Kanten zu geringen Kosten neu zu knüpfen, falls Nachbarn ausfallen.

Insgesamt weisen wir in dieser Arbeit auf die große Bedeutung von netzwerkerzeugenden Prozessen
hin, sei es um festzustellen, welche Art von analytischen Methoden angewendet werden kann, oder
um netzwerkerzeugende Prozesse in komplexen Systemen in eine gewünschte Richtung steuern
zu können. Natürlich ist dieses Feld sehr weit, und sowohl in der Frage, wie wir herausfinden
können, welcher netzwerkerzeugende Prozess zu einem bestimmten Netzwerk geführt hat, als auch
in der Frage, mit welchen Regeln wir ein komplexes System ausstatten sollten, damit ein Net-
zwerk mit einer gewünschten Struktur entsteht, haben wir in dieser Arbeit erst einige wenige
Beispiele grundlegend bearbeitet. Wir hoffen aber, dass dieser neue Ansatz zum Verständnis und
zur Manipulation komplexer Netzwerke in naher Zukunft Früchte trägt, und neue Algorithmen
und Techniken liefert, mit der die steigende Komplexität unserer Umwelt gemeistert werden kann.

2. INTRODUCTION

In the last decade a new interest in network analysis has arisen under the name complex network
science. By now, the field is quite dominated by empirical observations and model–building with
questions such as: What is the structure of real–world networks and how can they be modeled?
These questions have mainly been posed and naturally can be very well answered by physicists
and other natural scientists using their large arsenal of methods. At first sight, it may seem that
this new field that is so strongly empirical and often follows only loosely defined questions, has
not much to tell computer scientists, and vice versa. Because this is a doctoral thesis in computer
science, we will discuss and explore where this new field of complex network science opens problems
that are both interesting for the theoretical computer scientist, and that can be solved with the
methods developed in this field, and also where computer scientists can contribute to the field of
complex systems science.

Complex network science has developed within complex systems science, a field that has rapidly
grown in the last decades [156, 181, 236]. Articles from this field have explained or at least
shed light on topics as different as the rise and fall of stock market indices [156], earth-quake
and snow avalanche analysis [115], the behavior of certain chemical reactions [246], neural network
patterns in neuroscience [131], function and structure of biological networks [7, 168, 221], automatic
categorization of web sites [124], and swarm behavior [190, 36], to name but a few.

Since complex network science is a subfield of complex systems science, we will first give a rough idea
of the term complex system in 2.1, together with a short history of the subfield of complex network
science, which is the main topic of this thesis. In 2.2 we discuss network modeling as an approach
for reducing complexity in complex systems and its importance for several applications. In 2.3 we
explore the main fields of interest for computer scientists in the realm of complex network analysis,
from analysis and modeling of the WWW to the correct use of so–called contextual algorithms. We
conclude the introduction in 2.4 by an overview of the topics addressed in this thesis.

2.1 Complex Networks in Complex Systems Science

In order to understand the current interest in complex networks, it is easiest to take a short detour
to the history and notion of complex systems science. For centuries, it seemed the best approach to
understanding natural phenomena by dissecting them into as small parts as possible, and analyzing
these parts in isolation, neglecting the interactions they might have with each other. A typical
example of this reductionism can be observed in the analysis of the behavior of falling objects.
Although the behavior of falling objects seems to be complicated to describe, it became much
easier to understand after it was recognized that the fall of any object is subject to two different
forces—namely, gravity and friction. With this discovery it was easy to think of experiments that
could reveal the nature of both forces in isolation. By reducing the whole system to two parts,
beautiful and simple laws to describe gravity and friction emerged that could then be combined to

2. Introduction 11

understand the overall behavior of falling objects. In general, this reductionistic approach can be
used to explain how single objects under multiple forces will react.

Later, a model that would describe just the opposite, namely, a system composed of multiple
objects under the same force, was needed to describe the behavior of gases [16]. It turned out
that with gases the properties of the whole system can be calculated by treating the system as a
statistical ensemble of single particles, giving this part of physics the name statistical mechanics
[16]. In detail, the property of the system is a function of the expected distribution of the properties
of single atoms, like their kinetic or potential energy. Although this model treated for the first
time a system composed of many entities and their interactions, i.e., the distribution of energy due
to collisions, gases are not generally considered complex systems because the properties of gases
scale with their size, obeying the same laws whether one liter, one thousand liters, or a million
liters are observed, and most interactions between particles such as attraction or repulsion can be
ignored on a broad scale.

But it turned out that some systems consisting of multiple, interacting entities cannot be under-
stood by analyzing the properties of single entities or their distribution, but only by analyzing their
properties and interactions. A straightforward example of this is the ability of a colony of ants to
find a short path from its nest to a food source [36]. The ants do this by first walking randomly
until they have found a promising food source. They will then return to the nest, leaving little
droplets of pheromone on their way. This pheromone tells other ants to follow the trail, whereby
they also deposit some pheromone. Note that the pheromone diffuses into the air approximately
radially from the spot, and thus, if the trail has a bend, the concentration of pheromone will be
highest on the inside of the bend. Thus, a new ant following the trail will short-cut the bend a
bit, and furthermore leave a fresh trace of pheromone spots on a new trail with a shallower bend.
This process will eventually lead to straight trails, with a short distance from the nest to the food
source [48]. This phenomenon cannot be understood by looking at a single ant. Only the collective
behavior of the whole ensemble of interacting ants enables this phenomenon to occur, making it a
so-called emergent property of the system.

This new kind of phenomena requires a new kind of science:

... The world is indeed made of many highly inter-connected parts on many scales,
the interactions of which result in a complex behaviour that requires separate inter-
pretations of each level. This realization forces us to appreciate the fact that new
features emerge as one moves from one scale to another, so it follows that the science
of complexity is about revealing the principles that govern the ways in which these new
properties appear. [235]

Intuitively, a complex system is one whose pattern and behavior is hard to describe and understand
by dissecting it into different units, while disregarding their interactions. Following this intuition,
everyone would consider the global finance market or the global climate a complex system whereas
the power supply network of a house—be it as complicated as it may—would not qualify as being
complex. Despite or maybe also because of this intuitive understanding there is no ”single sentence
answer” ([184]) to the question of what a complex network is: whenever people tried to rigorously
define the notion of a complex system it was either too general, including systems that are not
generally considered complex, or too strict, and thus, as Newman points out: ”Many definitions
of ”complex systems” have been proposed over the years, and at present there is none which is
universally accepted.” [178]. However, this phenomenon of emergent properties induced by the
interaction of multiple entities is the common ground of complex systems science, as Newman
states: ”Most people however would agree that a fundamental property of complex systems is that

2. Introduction 12

Falling Object

Gravity Friction

Reduction

Combination

+ =

(a) reductionism

Gas

Heat

Boltzmann

Statistical
Mechanics

< >E = 3/2nRTkin

(b) statistical mechanics

Complex System

food

Nest

(c) complex system approach

Fig. 2.1: Three different approaches to analyze a system. (a) Reductionism: If a system consists of an
object subject to different forces, these can be analyzed in isolation. The resulting force on the object is
given by the sum of all forces. (b) Statistical Mechanics: If a system consists of multiple objects subject
to one force and the interactions between them can be neglected, statistical mechanics can be used to
deduce properties of the system. (c) Complex Systems: If a system consists of multiple objects whose
interactions cannot be neglected, a complex systems–approach is needed.

2. Introduction 13

they are composed of a large number of components or ”agents”, interacting in some way such
that their collective behaviour is not a simple combination of their individual behaviours.” [178]

Moreover, real complex systems like the aforementioned global finance market are in most cases
composed of different kinds of entities that are entangled in multiple kinds of relationships, making
the effects of one kind of entity or one kind of relationship hard to understand. To reduce this
complexity, complex networks concentrate on one kind of entity and mostly only one kind of
relationship between them by representing entities by vertices, and their interactions by edges
between the vertices. There are mainly two types of perspectives concerning complex network
science. The first is concerned with the special structure of complex networks and how it emerges:

As we are just beginning to realize however, there is a third aspect to these systems
which may be even more important and which has so far received little attention, and
that is the pattern of interaction between agents, i.e., which agents interact with which
other. [178]

The second perspective views complex networks as a kind of skeleton of the complex system at
hand which has to be understood before processes of the whole system using that skeleton can be
understood, as the next citations emphasize:

Why is network anatomy so important to characterize? Because structure always
affects function. For instance, the topology of social networks affects the spread of
information and disease, and the topology of the power grid affects the robustness and
stability of power transmission. [225]

As it stands, network theory is not a proxy for a theory of complexity - it only
addresses the emergence and structural evolution of the skeleton of a complex system.
The overall behaviour of a complex system, which we ultimately need to understand
and quantify, is as much rooted in its architecture as it is in the nature of the dynamical
processes taking place on these networks. [20]

In this sense, the latter kind of perspective views complex networks as the basis of more complex
processes in the whole system at hand and will analyze questions on how these two interact. In any
case, complex network science is now an accepted field in the realm of complex systems science,
with many applications in different disciplines, as stated by the living roadmap of the Open Network
of Excellence in Complex Systems (ONCE-CS) [184]. In the following we will give a short historical
overview of the field of complex networks science.

2.1.1 A Short History of Complex Network Science

In a very broad definition, we will denote by complex network science1 all research that can be
subsumed under the following three perspectives:

1 As will be obvious on the following pages, complex network analysis is quite a young and very interdisciplinary
field. The publications on which this thesis is based come from sociology, mathematics, physics, computer
science, and biology. Naturally, there is a problem with different languages, and often the same term is used
to cover different concepts, and the same concept is known under a hundred names. Discussing the work of
others I will always try to translate the concepts into the well-known, traditional notions of graph theory and
will consistently use graph theoretic terms even if the original work has introduced a new name for a concept.
For clarity, I will mark these ’translations’ in footnotes where appropriate.

2. Introduction 14

1. Complex Network Analysis: measures and algorithms introduced to understand the spe-
cial structure of real–world networks by differentiating them from established graph models.

2. Complex Network Models: models that capture essential structural properties of real–
world networks.

3. Processes on Complex Networks: analysis of the outcome of a process or algorithm on
a given network structure.

We will give a short overview of the most important findings in each of the three realms as far as
they are important for the understanding of this work.

Complex Network Analysis

As complex network analysis we understand any approach that maps a real-world problem or
situation to a graph, analyzes this graph, and transforms the results of the analysis back to the
real-world problem or situation. In this definition, the term network is missing, and instead the
term graph is used. And indeed, in many publications the terms are used interchangeably. In
this work, we will also use both terms, but with the following distinction: If we speak of a graph,
only the mathematical object is meant, i.e., an object composed of vertices and edges that may
be directed or undirected, and weighted or unweighted. In the case of network analysis, the graph
represents real-world entities and one or more relationships between these entities. If we speak of
a network we refer to the entities and their relationship represented by the graph. The difference
is subtle, so we will illustrate the point with the example of the autonomous system of the Internet
[80]2. An autonomous system is defined as a set of routers within the same domain, specified by a
special pattern of the IP addresses. These routers are physically interconnected by different types
of cables. The routing table of a router specifies for any given target IP address where the router
will send the message to next. These entries thus identify those routers with which the router is
physically linked, and by reading the routing tables a graph can be built in which every router
is represented by a vertex and two vertices are connected by an edge if the corresponding routers
are physically linked. In the corresponding communication network, each router can be described
by a distinct set of properties, e.g., its position, its machine address, or its bandwidth, and it can
be in different relationships with other routers, whereas in the graph structure, vertices have lost
any information about the router they represent except the information about with which other
routers it is connected 3. In this sense, we will also use the terms ’graph’ and ’network’ (quite)
interchangeably, but stick to the term ’graph’ as long as only the adjacency information is needed,
i.e., the information about which object is related to which other object.

The first application of network analysis—and at the same time the beginning of graph theory—
was the famous solution to the seven bridge problem of Königsberg by Euler in 1735, published
in 1752 [77]. Legend has it that people were asking themselves whether it was possible to walk
over all bridges without crossing at least one of them twice. Euler saw that this problem could be
generalized to the question of whether a graph admits a tour that visits all vertices without using
any edge twice, a tour which is now called an Euler tour. The graph of Königsberg is constructed

2 The authors of [80] call this graph the inter-domain topology of the Internet.
3 A sentence like ’router A is connected with router B by an edge’ intermingles these two settings. However,

such a sentence is immediately understandable for everyone and much shorter than the two alternatives: ’The
vertex representing router A is connected with the vertex representing router B by an edge’ (graph setting), or
’Router A is connected with router B by a copper cable and thus they are related to each other’. Although a
clear and strict treatment will not allow for a sentence like ’router A is connected with router B by an edge’ we
will sometimes identify the vertex with the object it represents to shorten text without losing understandability.

2. Introduction 15

by representing parts of the town by vertices where two vertices are connected if the corresponding
parts of the town are connected by a bridge. With this transformation, the solution of the more
general problem of finding an Euler tour showed that there is no walk using all bridges that does
not use at least one bridge twice. Although Euler did not directly transform this problem into
a graph, but rather formulated it as a sequence ordering problem, this is considered to mark the
beginning of graph theory [102].

From the first work of Euler, graph theory then flourished as a mathematical field, and many
structural properties of graphs were defined and analyzed [33, 101]. Next to the analysis of general
graphs, another type of publication was concerned with the structural analysis of certain graph
models, foremost random graph models [76, 91, 220]. In this type of graph model, every edge has
the same probability of existing, independent of the existence of other edges. Since these graph
models are mathematically tractable, many of their structural properties are well-known; for a
survey see [34].

Next to understanding graphs in their own right, graph theoretic ideas were also used to under-
stand social and psychological phenomena. For example, one question concerning social systems
was whether important people could be determined by looking at social networks, i.e., the ques-
tion was transformed to finding the most important vertex of a graph. For this purpose, so-called
centrality indices were developed in the 1940s to the 1970s [13, 28, 87, 208, 212, 247], followed
by centrality indices for the analysis of the world wide web in the 1990s [187, 152, 124]. Look-
ing at the journals in which these measures were published, it is already clear that the field
of complex network science is extraordinarily interdisciplinary, ranging from sociology (Human
Organizations, Sociometry), biology, mathematics and physics (Bulletin of Mathematical
Biophysics), psychology (Psychometrika), chemistry (Journal of the American Chemical
Society), and computer science (Computer Networks). These works aimed to understand the
structure of real-world networks, where the term structure is loosely defined as: ‘From the view of
social network analysis, the social environment can be expressed as patterns or regularities in rela-
tionships among interacting units. We will refer to the presence of regular patterns in relationships
as structure.’ [237] (p. 3)

Until the 1980s, only very small and most often social networks were analyzed by the proposed
structural measures, e.g., a set of 21 managers and their consulting relationship, i.e., who would
go to whom to ask for advice [134], or the marriage and business ties between 16 families in 15th
century Florence, Italy [121]. With the onset of personal computers, much larger data sets could be
analyzed and today there is a large set of applications to very different fields, e.g., bioinformatics
[84, 116, 166, 188, 201], social network analysis [2, 19, 65, 97, 176, 66], e.g., high school dating
networks [29], sexual relationship networks [160, 161], or acquaintanceship and co-worker networks
[22, 215], co-purchasing networks [54, 55], and communication networks [242], to name but the
most important.

With the analysis of huge data sets it became clearer that real-world networks have a structure that
deviates strongly from the structure of random graphs, creating a need for new network models
and graph families to explain this structure.

Complex Network Models

For a long time, real–world networks were considered to be at least approximately representable
and analyzable as random graphs, an assumption which was rendered invalid in 1998 by the
article of Watts and Strogatz [242]. They introduced the so–called clustering coefficient whose
value strongly deviates from the expected one in random graphs [242]: the clustering coefficient

2. Introduction 16

measures for each vertex the probability that two vertices chosen at random from its neighborhood
are also connected by an edge. The interpretation of a high clustering coefficient in a network is
that the connections are somewhat local, and that if A knows B and C it is very likely that B and
C are also ’near’ each other and thus have a chance to ’know’ each other. This is a very intuitive
assumption in social and many other networks, where a friend of a person will often know a large
portion of the latter’s other friends. In [242], Watts and Strogatz could show that the average
clustering coefficient is much higher in real-world networks than expected in a random graph that
has a comparable number of nodes and edges. Still, the average distance between any two vertices
in the real-world network is comparable to those in the corresponding random graph.

This finding required a new model, the so-called small-world model [242]. The name was inspired
by a series of experiments conducted by Milgram in the 1960s [165, 231] which aimed to show
that any two persons in the United States are linked by a short sequence of acquaintances. The
experimental setting was given as follows: randomly chosen participants living in Nebraska or
Boston were asked to send a letter to a broker in Boston. The restriction was that the letter could
only be given to persons that the sender knew on a first-name basis. The main information known
about the target person was his position, his city of birth and the schools he went to, his name,
and his address. It turned out that those letters that made it to the target needed on average
only six intermediary steps, which led to the famous name ’six degrees of separation’ and the term
’small-world network’.

Since there was this discrepancy between the commonly used model and reality, a new graph
model was introduced by Watts and Strogatz, which will be discussed in detail in Chapter 4.
After its introduction, an immense richness of literature followed with mathematical analyses of
the new model and its variants [25, 24, 68, 174, 175], and further empirical analyses of a large set
of additional types of real-world networks [10, 84]. Thus, their article clearly marks the beginning
of the new field of complex networks science that is dominated by the search for clear structural
markers that differentiate real–world networks from simple random graph models.

A second cornerstone of the newly emerging field was the paper by Albert, Jeong, and Barabási
that showed the world wide web’s link structure to be far from what would be expected in a
random graph [8]. In a random graph, the number of edges a vertex has is expectedly Poisson–
distributed [34]. In contrast, this so-called degree distribution is scale–free (s. 3.2.5) in most
real–world networks, signifying that most vertices participate in a low number of edges, and a few
participate in many more than ever expected in a random graph4. In a second paper, Barabási
and Albert provided a model that explained how such a scale-free degree distribution could emerge
(s. 3.4.3) [21]. Next to these two most important network models, numerous others have been
proposed to model in more detail, e.g., citation networks [129], protein-protein interaction networks
[219, 232], the world wide web link structure [31], and metabolic networks [201].

Processes on Complex Networks

In the classical paper of Watts and Strogatz, first questions of how the network structure could
affect processes in the whole complex system were already posed and experimentally analyzed.
This opened up another field of research where the interaction between structure and function of
complex networks was explored. Here we just sketch some of the most important findings to give
a feeling for the kinds of questions asked in this field: An interesting aspect of the small-world
model was brought up by Kleinberg through the question of how people in a small-world are able

4 Actually, the same finding was also published in the same year by the Faloutsos brethren [80], but Albert et
al.’s paper had the greater impact and was more widely acknowledged.

2. Introduction 17

to find a short path. His model assumes that every vertex in the small-world has a globally known
position, but that each single vertex only knows the position of itself, the target, and its direct
neighbors. Kleinberg could show that there is only a very limited class of graphs that allows a
greedy search algorithm with an expectedly poly-logarithmical runtime [125, 126]. This paper
thus gives a concise relationship between a possible routing algorithm and the necessary network
topology to make it efficient. A further, almost shocking finding was described by Albert, Jeong,
and Barabási who showed that networks with the ubiquitous scale–free degree distribution are
much more prone to directed attacks than random graphs [6]. This paper preceeded the 9/11-
terrorist attack, but it was the first finding in this emerging field that indicated that most of our
modern technological, communication, and transport networks had an architectural flaw that made
them vulnerable, and that showed how important it is to conduct network analysis. On the other
hand, Albert et al. also showed that scale-free networks perform much better than random graphs
under random failures of vertices. This indicated that a safe system should be able to switch its
topology according to the context, i.e., attacks or random failure. In 6.6 we will show that in at
least some systems, where the edge costs are low enough to allow for rewiring as a reaction to
attacks, this can indeed be accomplished by a simple protocol. Other articles were concerned with
disease spreading on different network structures [191, 192], information cascades and cascading
failures [240], and efficient routing algorithms and congestion analysis [108, 95].

As we have indicated above, the number of network models for real–world networks proposed to
date is actually much higher than the number of different types of real–world networks analyzed
so far. It is thus natural to ask why network modeling is so important in complex network science.
We will discuss this question in the following section.

2.2 Network Modeling - An Approach to Reduce Complexity

in Complex Systems

Network modeling, i.e., finding an abstract graph family that appropriately models the real-world
network’s structure, began with the seminal paper by Watts and Strogatz. Since it is quite a new
scientific approach to the understanding of real-world networks it has to be justified. As Strogatz
points out in a review paper:

Networks are on our minds nowadays. Sometimes we fear their power - and with
good reason. On 10 August 1996, a fault in two power lines in Oregon led, through a
cascading series of failures, to blackouts in 11 US states and two Canadian provinces,
leaving about 7 million customers without power for up to 16 hours. The Love Bug
worm, the worst computer attack to date, spread over the Internet on 4 May 2000 and
inflicted billions of dollars of damage worldwide. [227]

To understand these processes we need to understand the underlying structure. And to understand
any system or structure we need an appropriate modeling as described in an article by Rosenblueth
and Wiener on The Role of Models in Science:

No substantial part of the universe is so simple that it can be grasped and con-
trolled without abstraction. Abstraction consists in replacing the part of the universe
under consideration by a model of similar but simpler structure. Models, formal or
intuellectual on the one hand, or material on the other, are thus a central necessity of
scientific procedure. [207]

2. Introduction 18

A model is needed to simplify the matter at hand to make it at the same time intuitively under-
standable and analyzable in terms of a formal, mathematical analysis. If now a real–world network
is given, how can a model be determined that describes it best? The problem is that science is
about falsification [198], i.e., we can only show that a given model does not fit the real-world
network. Nonetheless, such negative information is actually interesting: in the properties in which
the model fails to fit the real-world network there is some hidden structure that needs to be de-
termined and analyzed. Thus, network modeling has made progress by comparing the structure
of real-world networks with that of network models, mainly from the field of random graphs. The
experiments have the following form: a measure is computed for real-world networks and for a
corresponding graph from the model family, where ’corresponding’ normally means that it has the
same number of vertices, edges, and maybe other structural properties that are already known
about the networks to be analyzed. It is thus very important to find the best model family for
comparison with the real-world network, as Rosenblueth and Wiener state:

An experiment is a question. A precise answer is seldom obtained if the ques-
tion is not precise; indeed foolish answers—i.e., inconsistent, discrepant or irrelevant
experimental results—are usually indicative of a foolish question. [207]

And correct answers can only be achieved if the model is correct. If, e.g., a network is known to
be of a special type, the question of how to explore it efficiently can be answered with respect to
its structure. We want to illustrate this with the example of the exploration of so–called protein–
protein interaction networks. To understand a cell’s protein architecture, it is necessary to analyze
the interaction pattern of its proteins. The experiments that are needed to find out which pairs of
proteins interact are extremely expensive and time–consuming. In a widely used experiment, the
yeast two-hybrid system, two cells have to be genetically engineered for every protein, once as the
so-called bait and once as the prey. These cells compose a so–called library, and one experiment
has to be done for almost every bait–prey pair. Since building a library as described above is
extremely time–consuming and needs a great deal of time and chemical resources, it would be
helpful if a theory could guide scientists towards those experiments which would yield the most
information and should thus be done first. In [141] the authors show by virtual experiments on
already known protein-protein interaction networks that there is a strategy such that only a third
of all proteins have to be used as bait to discover up to 90% of all interactions. This strategy works
as follows: start with a small set of proteins as bait. After this set is processed, always pick the
one protein that interacts with most of the proteins analyzed so far as the next bait. This strategy
relies heavily on the idea that protein-protein interaction networks are scale-free networks, and it
is thus likely that such a protein will not only interact strongly with the set of proteins already
processed but also with the ones that have not yet been used as bait.

But of course, such an algorithm is only as good as the model it is based on, and whether a protein-
protein interaction network is really best characterized as a scale-free network was questioned only
half a year later [199]. The authors of this article show that protein-protein interaction networks are
much better matched by so-called random geometric graphs where vertices are positioned uniformly
at random in a metric space and every vertex is connected to all vertices within a unit disc around
its own position. We will later show that these kind of graphs also have a high clustering coefficient,
i.e., neighbors of neighbors tend to be also connected by an edge. If a graph has a high clustering
coefficient and a scale-free degree distribution, one can assume that the greedy strategy proposed
by [141] is not as successful as claimed because here many of the interactions of the next bait will
be with proteins that have already been used as bait, and will thus only confirm interactions that
had already been known before.

2. Introduction 19

Another example also comes from biological networks. In the last decade, the search for so-called
network motifs in biological networks has been promoted especially by a group around Uri Alon.
In their work, the occurrence of small subgraphs with a certain structure is compared with the
expected occurrence in a suitable random graph model [168, 166]. If a network motif occurs more
often than expected in the chosen random graph model, this motif is assumed to carry a function
that gave it an evolutionary advantage. Milo et al. showed—among other things—that certain
motifs are more frequent in neural networks than in their random graph model and implied that
this is so because of an evolutionary advantage of these motifs for the brain. As [14, 167] discussed,
this interpretation is highly dependending on the underlying random graph model. Especially, in
the case of neural networks, it is known that these are local graphs, i.e., a neuron has a special
position in the body of an organism, and it is much more likely to be connected to neurons near
by than to neurons far away. Artzy-Randrup et al. show that a very simple local network based
on vertices placed on a grid where nodes have a high chance of being connected to near-by nodes
will also show a motif frequency pattern that is far from that of a random graph. Interestingly,
this very simple toy network shows an over-occurrence of some of those motifs that are also more
frequent in neural networks than in the corresponding random graph. Artzy-Randrup et al. do
not state that their toy network matches the neural network in any sense better than the total
random graph, but they state that - if a comparison is needed to decide whether a network motif
is frequent - it is important to have a random model that is as closely as possible modeling all
structural information we already know about the network. In summary, understanding which
network model best captures a real–world network is very important for the design of efficient
algorithms and analytical methods, and may save time and effort exploring real–world networks
and provide new insights into their formation.

The design of efficient algorithms, e.g., routing and other distributed algorithms [194], but also
the analysis of electrical networks [34], or network design as a subfield of chip design [154] has a
long history in graph theory and computer science. So, what is the difference to complex network
science and why should computer scientists bother? In the following we will discuss the difference
between the approaches, and show where the fields overlap and where we think that they can
benefit from each other.

2.3 Computer Science and Complex Network Science

Until now, complex network science has been mainly dominated by the empirical analysis of real–
world networks and their structures. At this time, it is understood rather less as an engineering
science than a natural science that tries to understand and model our surroundings by observation.
What are the questions that can be answered by computer science, when computer science is
concerned with the question of how to compute something efficiently in a well–defined setting? We
see four main points of interest:

1. Analysis of the Internet and the WWW (2.3.1).

2. Algorithms on graph classes as defined by the new network models (2.3.2).

3. Network design for multi-agent systems (2.3.3).

4. Contextual algorithms in complex network analysis (2.3.3).

2. Introduction 20

2.3.1 Analysis of the Internet and the WWW

The analysis of the Internet and its overlaying networks like the WWW or peer-to-peer networks are
obvious examples where computer scientists can and have profited from models and analytic tools
from the field of complex systems science and complex network theory. As stated in the following
quotation, a thorough understanding of the Internet’s structure and its network–generating process
are crucial for all services based upon it:

Network generators that capture the Internet’s large-scale topology are crucial for
the development of efficient routing protocols and modeling Internet traffic. Our ability
to design realistic generators is limited by the incomplete understanding of the funda-
mental driving forces that affect the Internet’s evolution. (...) In light of extensive
evidence that Internet protocol performance is greatly influenced by the network topol-
ogy (...), network generators are a crucial prerequisite for understanding and modeling
the Internet. Indeed, security and communication protocols perform poorly on topolo-
gies provided by generators different from which they are optimized for, and are often
ineffective when released. (...) Thus to efficiently control and route traffic on an expo-
nentially expanding Internet, it is important that topology generators not only capture
the structure of the current Internet, but allow for efficient planning and long-term
network design as well. [254].

But since the Internet and the world wide web are the result of independent entities that added
their routers to it or built their websites, these networks cannot be analyzed by the classical,
computer scientific approaches, but rather:

The Internet is also the first object studied by computer scientists that must be
approached with humility and puzzlement, and studied by measurement, experiments,
and the development of models and falsifiable theories—very much like the cell, the
universe, the brain, and the market. [79]

In the case of the self–organized Internet and the design of efficient algorithms on it, only the
interdisciplinary approach of complex system science, including game theoretic approaches, and
computer science seems to be able to tackle the task.

2.3.2 Algorithms on Special Graph Classes

The above paragraph concerns the quest for efficient algorithms on a specialized kind of network,
namely the Internet and the WWW. More generally, classic graph theory is often interested in
finding optimal solutions for some problem on a given graph, e.g., the so-called vertex cover prob-
lem: What is the minimal number of vertices in a graph such that every edge is incident with at
least one of them [205]? Whenever such a problem is stated, the first question is: can the problem
be solved efficiently, i.e., in a polynomial number of time steps, on a general graph? If the answer is
no, a subsequent question is often: can it at least be computed efficiently on special graph classes,
such as planar graphs, series–parallel graphs, or hypercubes [101]? These questions try to find the
limiting cases where problems become hard, i.e., computationally infeasible.

So far, these special graph classes have been quite restrictive and artificial, and thus unlikely to
ever occur in any real application. The new network models capture at least some major structural
properties of real–world networks and, especially in the emerging field of algorithm engineering,

2. Introduction 21

these can lead to better algorithms for the expected input. Since the new network models are on
the one hand much younger than the more established random graph models, and on the other
hand often more difficult to analyze, there are still many open questions in this area. A first result
in this realm is, e.g., given by Cooper, Klasing, and Zito who were able to compute lower bounds
and new algorithms for computing dominating sets in web graphs [56].

Generalizing the point above, network models from complex network science define interesting,
but inherently more difficult graph families for which it is not yet clear whether more efficient
algorithms can be designed. In chapter 5 we will introduce one such structure that has already
been proven to make algorithms more efficient, and we hope that this will be a starting point for
more research in this direction.

2.3.3 Network Design in a Multi-Agent System

Network design problems belong to one of the classical realms in theoretical computer science
[205]. In network design a typical question might be: given a set of points in the plane, how can a
network be designed such that it connects these points with minimal total edge length?
The design of optimal network processes on a given graph is also a classic problem in computer
science, e.g., network flow problems [3]. In the analysis of network processes, a typical question
might be: given a network of streets and a set of destinations and targets, how can the transport of
goods be scheduled optimally? Both kinds of questions assume that the network structure and the
process on it can be centrally supervised and designed, and that there exists a global optimality
criterion. The fundamentally different approach in complex network science is that neither network
structures nor ongoing processes are centrally organized but stem from the effort of multiple, and
possibly selfish and myopic entities. In this sense, classical network design and process problems are
posed from the perspective of an engineer who has freedom to construct them whereas the complex
network scientist takes the perspective of an observer, trying to reverse–engineer the process that
might have led to the system at hand. Here, typical questions are: what kind of network structures
emerge in real–world systems and what process does most likely lead to these structures? How are
processes directed over the network if every single vertex makes its own decisions locally? Thus,
the main difference between the approaches is the amount of control we assume to have over the
system at hand.

Both fields overlap whenever networks are analyzed that are built by multiple, independent entities
but where at least some control can be exerted, e.g., by law enforcement, and hardware or software
capabilities. The Internet is one of them, as already stated above. Another typical example of these
kind of networks are peer-to-peer networks, i.e., networks among groups of users, established by the
same software, to share data or to chat [23, 224]. Inbuilt in this software are rules governing how a
new user is connected to the existing network and how the network changes if he leaves it. It has
been shown that due to these rules some peer-to-peer networks will show small–world properties
and scale-freeness of the degree distribution [146]. By appropriately designing this software, it is
also possible to give incentives for desired behavior, e.g., for sharing the user’s bandwidth with
others, which will then influence the topology of the network structure and subsequently the flow
of information over it. In all of these networks, it is desired that the whole process of network
formation occur in a self-organized and decentralized manner but still result in a globally (near–)
optimal structure.

It seems that our modern world will become increasingl inhabited by technical communication
networks consisting of small, independent, and maybe also mobile units that create, rewire, and
remove links to other units, and here, software can be built to guide the network–generating process

2. Introduction 22

Complex
System
Level

Complex
Network

Level

Solution
by contextual algorithm

Graph Level

(a)

Fig. 2.2: In complex system analysis some questions are answered by transforming the complex system
into a complex network, subsequent application of a graph theoretic algorithm like the computation of
centrality values or a clustering algorithm, and retransformation of the result into the complex system.
Since the choice of the correct algorithm on the network/graph level depends on the context defined by
the complex system, these algorithms are called contextual algorithms.

towards a desired structure—but only if the mechanisms of decentralized and self-organized network
formation have been understood and desired network structures have been identified.

A last point of interest concerns the design of algorithms to answer network analysis questions.

Contextual Algorithms in Complex Network Analysis

In the past four years we have worked with centrality indices and different clustering algorithms,
and it has become very clear that in the field of complex network analysis, algorithms have a
context, as we will briefly discuss here and in more detail in 5.1.2. In complex network analysis,
algorithms are often used to give an answer to a question about the complex system they represent.
As we have sketched above, centrality indices where proposed to answer the question of who is the
most important entity in a complex systems. To answer this question, literally dozens of measures
have been proposed [132, 133, 113], but—as Borgatti points out in [37]—every one is designed for
a special kind of process on the network that determines the notion of importance for this network.
We will discuss this point more closely in 5.1.2, but the summary is that not every centrality index
should be applied to every network although technically it could be.

The same is true for clustering algorithms, i.e., algorithms that try to find those parts of a network in
which the vertices are densely connected, so-called clusters. The motivation is that the computation
of clusters in a complex network will reveal functional modules of the complex system [93, 188,
201]. Again, numerous measures and algorithms have been introduced to find and evaluate these
clusters, all under different assumptions [89]. The most important distinction is between those
algorithms that allow [62, 188] or disallow [93, 204, 203] multiple memberships of vertices.

Also here, a computation of clusters can be done on almost any graph with any of the algorithms,
but the result may not be reasonable, i.e., the retransformation of the result to a significant answer
about the structure of the complex system may not be successful. It should be clear that such
an algorithm only makes sense if edges in a network are more likely between those objects that

2. Introduction 23

are indeed similar to each other, or fulfill a similar function in the complex system at hand. It is
not helpful if the relationship that is represented by the network connects more or less arbitrary
entities.

These two examples show that network analysis algorithms can often yield correct results as spec-
ified by the problem, but still they do not give a reasonable answer to the question that was
posed about the whole system. So, the problem comes from the transformation of a question
about a complex system into a mathematically and computationally tractable question about the
complex network representing it, and the problematic retransformation of the solution back onto
the complex system level (s. Fig. 2.2). Thus, without the context as defined by the whole sys-
tem the results given by an contextual algorithm are undefined on the higher level. Of course,
one could argue that this contextual information of where an analytical algorithm is applicable is
something outside of the algorithm itself. But we think that, in the days of algorithm libraries and
ready–made network analysis tools, the appropriate context is necessary information that should
accompany every algorithm and thus should be considered a (facultative) property of algorithms.

2.4 Overview

From the landscape of possible questions opened by complex network science, we were most in-
trigued by the interplay of local behavior and global properties of complex networks. As already
sketched above, the first cornerstone of complex network science is the paper by Watts and Strogatz
on small–worlds. Their model of real–world networks is comprised of two different components, a
so–called local graph family and a random or global part. As we have argued, an understanding
of a network’s structure and a reliable, and yet mathematically tractable model is most impor-
tant for finding new algorithms for real–world applications. It turned out that this first article on
small–worlds was by no means the only reasonable small–world model, and subsequently at least
five others have been proposed to explain the special combination of structural properties seen
in real–world networks. Thus, after giving the necessary graph theoretic definitions in chapter 3,
we will discuss in chapter 4 the common ground of these models, the so-called small–world phe-
nomenon which will then be rigorously defined. We furthermore present a new family of hybrid
graph models that show this phenomenon and that can be flexibly tuned to design networks with
desired properties.

As we have argued above, the process by which a network is generated defines the context for some
of the analytical algorithms. If the small–world network model is correct, and real–world networks
are at least partly formed by random edges, it is important to bound the maximal number of
random edges in a given graph to decide, e.g., whether the application of a clustering algorithm
will give reasonable results or not. In chapter 5 we will discuss the general idea of network–
generating systems and their inbuilt network–generating processes that have to be understood as
the context of a complex network. We will then show how to bound the amount of random edges
in complex networks by a new structural measure, the so-called backbone distance distribution. It
turned out that indeed this distribution distinguishes random graphs from real–world networks and
that networks with a steep backbone distance distribution exhibit a markedly different behavior
than those with a shallow distribution. However, although it is somehow intuitive that this steep
backbone distance distribution is an indicator of a network–generating process that prefers to build
local edges, it is actually hard to show a strong correlation between this structure and the proposed
generating process, as with other measures that were proposed to measure locality.

However, it turned out that minimizing the sum of backbone distances Q(T) is closely related to
an old problem in graph theory, namely that of finding a minimal length fundamental cycle base

2. Introduction 24

[61], which has applications in some optimization problems. We will first show that this problem
is NP-hard, and then present some heuristics for computing good distributions. We will show
empirically that in real–world networks Q(T) is quite near to a simple lower bound, which can
be interpreted as an explanation for why some algorithms are easier to compute on real–world
networks. We will finish this chapter with a short description of a graph drawing application for
drawing large and complex networks.

Whereas chapter 5 on network–generating processes is concerned with how much it is possible to
differentiate between local and random edges, chapter 6 is concerned with the question: if a system
consists of multiple, independent entities that are selfish, myopic, and prefer to build local edges,
how can we design a network–generating process such that the evolution of the network leads to
a desired global structure? Similar questions have already been posed and partly answered by
related fields of research in game theory or evolutionary computing. Our particular perspective is
first on finding a general framework in which these processes can be simulated and analyzed, and
second, on analyzing how sensitive such a complex system is with respect to the rules. We can
show that indeed two very similar rules that will eventually lead to the same network structure are
very different with respect to their expected runtimes, an aspect that, to our knowledge, has not
been discussed before. Although this analysis is only done on a toy example it shows that network
design in a complex system is a fundamentally different task than in a classical setting, with its
own questions and challenges.

A second problem we could solve by an evolutionary rewiring rule is the one that was posed
by the article of Albert et al. on the robustness and sensitivity of scale-free networks against
random failures and attacks [6]. As stated above, their finding was that scale-free networks will
decompose much faster than corresponding random graphs if highly connected vertices are attacked
and removed from the system, whereas random graphs turn out to be more sensitive in the case
of random failures. It seems that a network must switch its topology in order to be robust in
each scenario. This is, of course, a problem because centrally organized networks often have large
edge–building and maintenance costs, and decentrally organized networks, e.g., those based on
the Internet, are unaware of the scenario they are in because they lack the overview to decide
whether vertices are attacked or just fail at random. We will show that in the latter case, where
edge–building costs are low and locality is only required to keep the number of exchanged messages
low, it is possible to give the vertices a reaction rule that will—without knowing it—switch the
network’s topology according to the situation.

It is clear that neither the question of how to detect certain network–generating processes in the
resulting network, nor the question of how to design efficient evolutionary rules for complex network
design can be fully answered in this thesis. Thus, this work will finish with a discussion in chapter
7 of the accomplished results and a list of open problems that we think are interesting for future
research.

3. DEFINITIONS

3.1 Sets

Let S = {e1, e2, . . .} denote a set of elements. The cardinality |S| of a set gives the number of
elements in this set. P(S) denotes the set of all possible subsets of S.

3.2 Graphs

A graph G is a pair (V,E) of a set of vertices V and a set of edges E ⊆ V ×V . In cases of ambiguity,
we will denote the edge set of G by E(G), and the vertex set of G by V (G). An edge e = (v, w) is
said to be incident to its endpoints v, w and the connected vertices are said to be adjacent. A graph
can be weighted where the weight of an edge is given by a function ω : E → R. For compatibility,
unweighted graphs are often assigned a pseudo-weight function ω1 : E → 1, i.e., every edge has
weight 1. If all edges of a graph are given as unordered pairs of vertices, the graph is said to be
undirected, otherwise it is directed. We will denote undirected edges e by pairs of vertices in simple
brackets (v, w) and directed edges by (v → w).

3.2.1 Directed Graphs

Let e = (v → w) be a directed edge, then v is the source and w the target of this edge. The
out-degree dego(v) of a vertex is defined as the number of directed edges where v is the source, and
the in-degree degi(v) is defined as the number of directed edges where v is the target. The degree
deg(v) is defined as the number of all edges incident to v, i.e., deg(v) = dego(v) + degi(v).

3.2.2 Induced Subgraphs

A subgraph G′ = (V ′, E′) of G is any graph with V ′ ⊆ V and E′ ⊆ E, in short denoted by G′ ⊆ G.
A subgraph G′ is an induced subgraph if, for a given vertex set V ′, E′ is given by:

e′ = (v, w) ∈ E′ ⇔ (v, w) ∈ E ∧ v, w ∈ V ′ (3.1)

To simplify notations, we will denote by G− e the graph that results from removing e from E(G),
and by G − v the graph that results from removing v from V (G) and all its incident edges from
E(G). Analogously, G+ v denotes the graph that results by adding v to V (G), and G+ e denotes
the graph that results by adding an edge e = (v, w) between vertices v, w in V (G).

3. Definitions 26

3.2.3 Set of all Graphs

Let G denote the set of all possible graphs, and let G(n,m) denote the subset of all graphs with n
vertices and m edges.

3.2.4 Shortest Paths, Distance, and Components

A path P (s, t) from vertex s to vertex t is an ordered set of consecutive edges {e1, e2, . . . , ek} ⊆ E
with e1 = (s, v1), ek = (vk−1, t) and ei = (vi−1, vi), ∀1 < i < k. The length of a path l(P (s, t)) is
defined as the sum over the weights of the edges in the path:

l(P (s, t)) =
∑

e∈P (s,t)

ω(e). (3.2)

A path P (s, t) is a shortest path between s and t if it has minimal length of all possible paths
between s and t. The distance d(s, t) between s and t is defined as the length of a shortest path
between them. If there is no path between any two vertices, their distance is ∞ by definition. A
graph is connected if the distance between any two vertices is smaller than ∞. A subgraph is a
connected component if it is connected.

3.2.5 Degree Distribution

One of the structural properties of a graph is its degree distribution, i.e., the number of vertices
with degree deg(v) = k in dependence of the degree. It is well known that random graphs (s.
3.4.2) have a Poissonian degree distribution [34], with a mean degree of np and standard deviation
of
√
np.

Scale-Free Degree Distribution

It was shown independently by Albert et al. [8] and Faloutsos et al. [80] that the Internet and the
world wide web’s link structure show a scale-free degree distribution, i.e., the probability P (k) of
finding a vertex with degree k is proportional to k−γ .

3.3 Partition

A partition C = {C1, C2, . . . , Ck} of a graph G consists of subsets Ci ⊆ V of vertices of G where
Ci ∩ Cj = ∅ for all i 6= j and ∪i={1,2,...,k}Ci = V .

A partition C ′ is called a refinement of a partition C if for all components C ′
i in C ′ there is a

component Cj in C such that C ′
i ⊆ Cj , and if for at least one component C ′

i in C ′ there exists a
component Cj in C such that C ′

i ⊂ Cj .

3.4 Graph Families

A graph family GA(n,Π) is a set or graph defined by some algorithm A that gives a description
to construct graphs for every given n and - if needed - an additional set of parameters Π. If A

3. Definitions 27

Fig. 3.1: A grid graph with n = 6, m = 9, d = 2, and r = 1.

is a deterministic algorithm it constructs a single graph, if it is a non-deterministic or stochastic
algorithm it constructs all graphs with n vertices (and maybe additional parameters specified by
Π) with a determined probability. The instance that is created from some defined graph family
GA(n,Π) is denoted by GA(n,Π). For graph families, we will often state expected properties with
the words: with high probability, denoting that any instance GA(n,Π) constructed by A will show
property X with a probability higher than n− 1/n.

3.4.1 Grid Graphs

As an example of both categories, consider first the family of grid graph Gd(n,m, r) and second
the family of random graphs GR(n, p). A grid graph Gd(~n, r) is a graph with ~n = {n1, n2, . . . , nd}
vertices placed in d dimensions. Let xi(v) denote the position of v in the ith dimension. Each
vertex is now connected to all neighbors with Manhattan distance ≤ r, where the Manhattan
distance dM (v, w) is defined as

dM (v, w) =
d∑

i=1

|xi(v)− xi(w)|, (3.3)

i.e., the distance between v and w if each move can change the position by one in one dimension
(Fig. 3.1).

A cube Qd(n, r) is a special grid in which all ni = n.

3.4.2 Random Graphs

A random graph GR(n, p) is a graph with n vertices where every (undirected or directed) edge is
element of E with probability p. A different but related algorithm for constructing random graphs
is the GR(n,m) family of random graphs that picks m pairs of vertices and connects them with
each other. Most of the time an implementation will try to avoid self-loops and multiple edges.
Bollobas states that in the limes n→∞ all expected properties of both families will be the same
[34].

3. Definitions 28

3.4.3 Albert-Barabási-Graphs

The Albert-Barabási network model GAB(n,m,mo) was proposed to generate networks with a
scale-free degree distribution. It is a semi-static network model where in each time step t one
vertex vt is added to the already existing graph by the following rule: Let dt(v) denote the degree
of vertex v at time step t. The new vertex v will attach to exactly m different vertices in Gt where
Gt denotes the graph existing in time step t. The probability that vt attaches to vertex vt′ , t

′ < t
is proportional to degt(vt′), a process called preferential attachment.

3.5 Spanning and Minimal Spanning Trees

Given a weighted Graph G = (V,E) with ω : E → R the weight function, a spanning tree is a
subgraph that contains all vertices but only n−1 edges, and a minimal spanning tree is a spanning
tree with lowest total edge length regarding ω.

3.6 Isomorphism

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with |V1| = |V2| and |E1| = |E2|. G1 and G2

are said to be isomorphic if there is a bijective function φ : V1 → V2 that maps the vertices from
V1 to V2 such that:

∀e = (v, w) ∈ E1 ⇔ (φ(v), φ(w)) ∈ E2 (3.4)

We will indicate that two graphs G1, G2 are isomorphic by G1 ≃I G2.

3.6.1 Automorphism

Let Π : V → V denote a permutation of V . Π is called an automorphism of graph G if

(v, w) ∈ E ⇔ (Π(v),Π(w)) ∈ E,∀ (v, w) ∈ V × V. (3.5)

3.6.2 Structural Index

A structural index [41] is any function ψ : G ← R on G such that:

∀ G1, G2 ∈ G with G1 ≃I G2 : ψ(G1) = ψ(G2) (3.6)

In other words, a structural index does only depend on the structure of the graph, given by the
edges. We will extend this definition by including functions on sets of graphs C = {G1, G2, . . .}:
A structural index on a set C of graphs is any function ψ : P(G) ← R that yields the same value
for any set C ′ where one or more of the graphs Gi are replaced by isomorphic graphs.

3.7 Stochastic Processes

3.7.1 Chebyshev’s Inequality

Let X denote a random variable, P (X) a probability distribution, E(X) the mean of this ran-
dom variable with the given probability distribution, and σ(X) the standard deviation. Then

3. Definitions 29

Chebyshev’s inequality states that:

P (|X − E(X)| ≥ t ≤ σ2/t2. (3.7)

3.7.2 Chernoff’s Inequality

Let X1,X2, . . . ,Xn be independent Poisson trials, i.e., every random variable Xi has probability
pi of being 1 and probability 1 − pi of being 0. Let now X be a random variable that sums over
Xi, i.e., X =

∑

iXi. The expectation E[X] = µ of X is given by
∑

i pi. Now, for any δ > 0, the
following statement holds:

Pr[X > (1 + δ)µ] <

[
eδ

(1 + δ)(1+δ)

]µ

(3.8)

3.8 Complexity

3.8.1 NP-Hardness

The complexity of a problem denotes how its runtime depends on the size of the problem. There
are two large classes of problems, P and NP . For problems in P there are known algorithms such
that the solution can be computed in polynomial time in the size of the problem. For problems in
NP it is possible to check in polynomial time whether a given answer to the problems is actually a
solution, i.e., if an answer is produced non-deterministically it is possible to check it in polynomial
time. If a problem is at least as hard to solve as all the problems in NP , it is said to be NP-hard, if
it is in NP , it is said to be NP-complete. It is yet undecided whether there are efficient algorithms
for the problems in NP , but if only one efficient algorithm for any NP-complete problem is found,
all of them can be solved efficiently.

Often a problem Pi is shown to be NP -hard by reducing another NP -hard problem Pj to it, i.e.,
by defining a polynomial function that transforms Pj into a problem P ′ of the form Pi such that
if P ′ is solved, also Pj is solved. If the transforming algorithm is itself in P , and there were an
efficient algorithm for solving Pi, then Pi would also be in P , in contradiction to the fact that it
is an NP -hard problem.

4. THE SMALL–WORLD PHENOMENON

The first real-world network model, the small-world network model introduced in 1998 by Duncan
J. Watts and Steven H. Strogatz raised much interest and was followed by a large number of
others that were also termed small-world network models. These were based partly on different
definitions of the term small world which triggered our curiosity in the question: ”What makes
a network model a small-world network model?”. We will start this chapter with a review of
the classic small-world network model by Watts and Strogatz in 4.1. In 4.2 we will then discuss
some of the most important small–world network models that were published later, and analyze
the properties common to all of them. Our finding is that all classic small–world network models
show the so-called small–world phenomenon, the drastic decrease of the average distance in hybrid
graphs built out of a graph family with a large diameter and a sparse random graph. This work
resulted in a general framework for hybrid graphs showing the small–world phenomenon which is
presented in 4.31. The framework, its relation to other models, and possible applications are then
discussed in 4.4.

4.1 The Classic Small–World Network Model

To find a general definition that includes all classic small-world network models, we will start with
a presentation of the first small-world network model that was introduced by Watts and Strogatz
in a seminal paper in 1998 [242, 239].

In this paper, Watts and Strogatz analyzed different kinds of real-world networks with respect to
the average clustering coefficient cc(v) and the average distance L(G)2. The clustering coefficient
cc(v) of vertex v describes the fraction of neighbors of v that are themselves connected by an edge,
formally defined as:

cc(v) =
e(v)

deg(v)(deg(v)− 1)/2
, (4.1)

where e(v) denotes the number of edges between the neighbors of v, i.e.,

e(v) = |{(wi, wj) ∈ E|wi, wj ∈ N(v)}|, (4.2)

with N(v) the set of neighbors of v, i.e.,

N(v) = {w|(v, w) ∈ E}. (4.3)

Note that the denominator in Equ. 4.1 gives the possible number of edges between neighbors of
v. The clustering coefficient cc(G) of a graph is now simply defined as the average clustering

1 This project has been conducted together with Hendrik Post and Michael Kaufmann. Part of the following
results have been published as a technical report [150], a conference paper [120], and a journal paper [151].

2 The authors of [242] called it the characteristic path length, but in consistency with standard graph theoretic
terms we will call it the average distance here.

4. The Small–World Phenomenon 31

coefficient of its vertices:

cc(G) =
1

n

∑

v∈V

cc(v) (4.4)

The average distance L(G) is defined as:

L(G) =
1

n(n− 1)

∑

s∈V

∑

t∈V −s

d(s, t). (4.5)

These structural measures were chosen by Watts and Strogatz to show that real-world networks
have a special structure that is not captured by any of the classic graph families. In general, to show
that some kind of data has a special structure it is necessary to compare it with an unstructured
instance that is otherwise comparable, e.g., in size. Since random graphs from the G(n, p) model
show no bias towards any special structure, Watts and Strogatz chose them to compare their real-
world networks with. A given real-world network with n vertices and m edges is compared with a
random graph from the G(n, p) model (3.4.2) with n vertices where p is set to m/(n(n− 1)) such
that the expected number of edges in the instance is m. Henceforth, we will call such a random
graph a corresponding random graph. Random graphs belong to a well analyzed family of graphs
and it is easy to show that the clustering coefficient of such a graph is expectedly p, and Bollobás
has shown that the average distance is bound from above by O(n log n) (s. Theorem 4.2) [34]3.

Surprisingly, in those real-world networks that Watts and Strogatz examined the average clustering
coefficient was up to 1, 000 times higher than in the corresponding random graph while the average
distances were comparable. Since pure random graph models, i.e., G(n,m) and G(n, p), fail to show
this combination of a high average clustering coefficient together with a small average distance,
the authors introduced a new random model, the so-called small-world model. It was designed to
scale between the two extremes of total regularity4 and total randomness because these were the
two opposing extremes defining the range into which all networks seemed to fall, as the authors
state:

Ordinarily, the connection topology is assumed to be either completely regular or
completely random. But many biological, technological, and social networks lie some-
where between these two extremes. Here, we explore simple models of networks that
can be tuned through this middle ground: regular networks ’rewired’ to introduce
increasing amounts of disorder. [242]

The model starts with a regular graph family called circulant graphs [102].

Definition 4.1 (Circulant Graph)
A circulant graph Gc(n, k), k ≤ n consists of n vertices, labeled 1 to n, and every vertex i is
connected to every vertex j where (i+ z) mod n = j, z ∈ {1, . . . , k}, i.e., for Gc(n, 1) the circulant
graph is just a ring of n vertices, while Gc(n, n) describes a clique.

In other words, a circulant graph described by the parameters n and k can be constructed by
positioning n vertices on a ring where every vertex is connected with its clockwise and counter-
clockwise k next neighbors. A sketch of Gc(24, 3) is shown in Fig. 4.1(a).

3 This theorem actually bounds the maximal distance in a graph, the so-called diameter, which is also an upper
bound of the average distance in the same graph.

4 Note that in this case we use the term regularity as Watts and Strogatz have used it, but that it has a well-
defined meaning in graph theory that cannot possibly be meant by the authors. We will discuss this problem,
and the meaning and importance of regularity for small-world network models in 4.2.3.

4. The Small–World Phenomenon 32

1
2

3

422

23

24

5

6

8

9

10

11

121314

15

16

17

18

19

20

21

(a) Gc(24, 3), p = 0

1
2

3

422

23

24

5

6

8

9

10

11

121314

15

16

17

18

19

20

21

(b) p = 0.1

1
2

3

422

23

24

5

6

8

9

10

11

121314

15

16

17

18

19

20

21

(c) p = 1

Fig. 4.1: a) A circulant graph of 24 vertices where each vertex is connected to its three nearest neighbors.
b) Each edge has been rewired with probability p = 0.1. c) Each edge has been rewired with p = 1.0.

4. The Small–World Phenomenon 33

0.0001 0.001 0.01 0.1

0.2

0.4

0.6

0.8

1.0

C/C(0)

L/L(0)

Fig. 4.2: Shown is the average clustering coefficient (denoted by C here) and the average distance (L)
in the GSW (n, k, prew) model, in dependence of prew and normalized by the resulting value for p = 0
(C(0), L(0)). The average clustering coefficient is quite stable as long as not too many edges are rewired,
while the average distance drops very fast, even at very low values of prew.

It can be seen quite easily that for limn, k → ∞, the average clustering coefficient approaches
3/4 while the diameter and the average distance between vertices in such a graph is in Θ(n/k),
i.e., growing linearly with the number of vertices for fixed k. Thus, this type of graph family
also does not show the wanted combination of a high average clustering coefficient and a low
average distance. Even more, its structural properties are directly opposed to that of a random
graph. By an additional rewiring step this circulant graph can be transformed into a special kind
of random graph. This rewiring step is governed by a rewiring probability prew which determines
the probability that a certain edge will be rewired, i.e., whether the edge will be removed and
the source of the edge be connected to a new, randomly chosen target vertex5. Figs. 4.1(b) and
4.1(c) show the result of a rewiring step, once with prew = 0.1 and once with prew = 1.0. We
will denote the small-world random graph family by GSW (n, k, prew), and any instance from it by
GSW (n, k, prew). By this description it is clear that GSW (n, k, 0) is just the same as a circulant
graph G(n, k), and GSW (n, k, 1.0) describes a special kind of random graph family. Note that for
any circulant graph Gc(n, k) and any small–world network based on it a corresponding random
graph is one with p = (2nk)/(n(n− 1)) and n vertices.

In this model there is an interval of values for prew such that the resulting graph GSW (n, k, prew)
has a high average clustering coefficient cc(GSW (n, k, prew)) that is much higher than that in the
corresponding random graph G(n, 2nk/(n2−n)), and a small average distance L(GSW (n, k, prew));
this interval is shaded grey in Fig. 4.2. Note that in this figure, the values are shown in dependence
of prew, normalized by the value for prew = 0. The networks resulting in this interval where the
average clustering coefficient of the resulting graph is much higher than that of a corresponding
random graph but the average distance is comparable, i.e., cc(GSW (n, k, prew)) >> cc(G(n, 2k/(n−
1)) and L(GSW (n, k, prew)) ≃ L(G(n, 2nk/(n2 − n))), are termed small-world networks. Note,
however, that there is no strict definition of this interval.

We were mostly intrigued by the idea that a network with a large diameter is compacted by just
a few random edges, and wanted to concentrate on the question of what kind of graph families

5 Actually, the algorithmic description is too short in [242] to understand whether the edge is totally rewired
(new source, new target), or whether only a new target vertex is chosen. The figures and remarks in a follow-up
article by Newman and Watts ([175] and [181] (p. 290/1)) indicate that the latter procedure was chosen. Note
that this procedure cannot produce the same set of graphs as the G(n, p) family.

4. The Small–World Phenomenon 34

would show this small-world phenomenon, and how many random edges are needed in dependence
of the structure of the underlying graph family to compact the graph. The answer to this question
can then be used to build a general framework for networks showing the small-world phenomenon.

For this task we first want to define more strictly the terms small–world network model and small–
world phenomenon. Although the first definition of a small-world, or a graph with the small-world
effect, was not strict, we think that it is possible to deduce such a definition by examining the many
other small-world network models that were proposed and accepted by the scientific community.
Thus, we will start this task with a very rare approach in computer science, namely a hermeneutic
analysis of texts and models to abstract the common ground of all small-world models.

4.2 Finding a General Definition of Small–World Network Models: The

Dependency Between Regularity, Locality, and a High Clustering Coefficient

The article by Watts and Strogatz triggered a vast amount of research and soon many variants of
so-called small–world network models were proposed although what a small–world network model
is was not strictly defined. As Newman puts it in his review in 2000: ”The precise definition of the
”small-world effect” is still a matter of debate ...”[173]. The situation had not changed much by
2004 when Evan reviewed the field: ”In terms of networks, [small–worlds] have a relatively large
clustering coefficient. ... On the other hand, the distances across the network are small, comparable
with those obtained from a random graph and much smaller than any regular network. This is
then the definition of a small world network”. This sentence is followed by a footnote: ”Well,
except that some people drop the clustering part of the definition. You just can’t win with the
nomenclature in this field.” [78]. In 2006, Newman, Barabási, and Watts stated: ”Watts and
Strogatz defined a network to be a small-world network if it shows both of the properties described
above [low average distance and high average clustering coefficient]”. This simple statement was
also followed by another footnote: ”This expression, however, has been used inconsistently by
other authors, probably because of confusion about what it means. It might be natural to assume
that a ”small-world network” would be one that shows the small-world effect, and indeed some
authors use the term in this way. Some other authors use it to mean specifically networks taking
the form of the Watts-Strogatz model. One should be careful, therefore, in reading the literature
on this subject; the use of the term ”small-world network” sometimes but not always implies high
clustering, and may or may not refer to a specific model.” [181].

The question we are trying to answer here is what makes a network model a small–world network
model. Are regularity and a high clustering coefficient necessary ingredients of the small-world
phenomenon? Our method is as follows: If many of the accepted small-world models rely on some
structural property such as regularity we will assume that it is a necessary ingredient; if some or
many discard it, we assume that it is not a salient feature of the small-world effect. We start with
a discussion of the first paper on small–worlds by Stanley Milgram.

4.2.1 Small–Worlds are Surprisingly Small

The seminal experiments that introduced the term small world to describe social networks were
conducted by the famous psychologist Stanley Milgram who tested how fast information can flow
in human acquaintance networks [165, 231]. He discovered that the number of steps until certain
information (in this case, a letter) arrived at a target person thousands of miles away from the

4. The Small–World Phenomenon 35

starting point was surprisingly small6. This fact is surprising because people are mainly connected
to other people who live not too far away, i.e., connections are mainly local. In a purely local setting,
where there is strictly no connection between people that live at more than a given distance, the
length of a chain should be proportional to the square root of the geographical difference between
source and target person, which was not the case. The term small-world was used here to describe
the surprising fact that a network that is dominated by local edges can be much smaller than
implied by its local nature. We will see later that this surprise is a salient feature of small–world
network models.

This finding of Milgram et al. was the starting point of Watts’ and Strogatz’ article, and their
small–world networks are supposed to model the real-world situation. Although smallness is a
required property of a small–world network, most authors argue that it is not sufficient to make a
network model a small–world network model, as we will discuss in the following paragraph.

4.2.2 Are All Small Networks Small–Worlds?

An important question to answer is whether there are graph families with a small average distance
that are not accepted as small–world network models, e.g., whether a pure random graph should
be considered a small–world network model. In the light of the article of Watts and Strogatz this
point is clearly rejected, but it is debatable as Newman states:

The precise definition of ”small-world effect” is still a matter of debate, but in the
present case a reasonable definition would be that l [the average distance] should be
comparable with the value it would have on the random graph ... [173]

This statement is reinforced in the latest book by Newman, Barabási, and Watts, where the authors
state that the random graph model does show the small-world effect [181]. But they also state
that a small-world model is one that shows the small–world effect and high clustering. Thus,
small-worlds and random graph models are put in opposition to each other and it is reasonable to
exclude random graphs from a (yet to be given) small-world definition.

Summarizing, we conclude that the small–world effect, defined as cited above, is a necessary
but not a sufficient ingredient for most authors to make a network model a small–world network
model. The other part of the definition by Watts and Strogatz turns out to be the part that is
much harder to define formally: a small–world network is clustered. Since we know that their
model was supposed to model real-world social networks that are dominated by local relationships,
it is reasonable that the clustering coefficient is supposed to measure locality. On the other hand,
Watts and Strogatz introduced the clustering coefficient to measure the regularity and cliquishness
of the network. We will now discuss whether regularity is necessary for a small-world network
model.

4.2.3 Regularity

In graph theory, a graph is regular if every vertex has the same degree. It is unlikely that this kind
of regularity was meant by Watts and Strogatz, since the clustering coefficient does not measure

6 The first experiment was quite small, and some say too small to really show that any two people are separated
by the well-known six degrees of separation [128]. The second study with Travers was based on a larger sample
and also here, those chains that reached the target had only 5.2 intermediaries. Still, both experiments might
underestimate the real length because they do not consider chains that stop without reaching the target.

4. The Small–World Phenomenon 36

this kind of regularity. Another, intuitive meaning of regularity is that every vertex could take the
place of every other vertex in the graph. Circulant graphs show different kinds of regularity in the
sense of ’structural isomorphisms’. Two of them are the so-called edge and vertex transitivity, i.e.,
for any pair of edges a and b (vertices v and w) there is an automorphism (s. 3.6.1) that maps a
to b (v to w). If that is the case, the edges (vertices) of a graph are virtually indistinguishable by
the adjacency matrix alone, and the graph is regular in the sense that different kinds of mapping
operations yield the same graph. Of course, in this latter sense, also random graphs are (at least
expectedly) regular, because the expected neighborhood, i.e., the number of vertices in distance k
to any given vertex v is exactly the same for all vertices [34]. In any case, the clustering coefficient is
not able to measure either kind of regularity since it is a local measure, but any of these definitions
of regularity require a bird’s eye view of the graph. Although the small–world network model does
scale between the very regular, in the sense of ’structured’, circulant graphs and a non-structured
randomized network, the clustering coefficient is not able to measure this, and thus we conclude
that regularity in the sense of edge or vertex transitivity is not a needed property of small–world
network models. This leaves open the question of what is measured by the clustering coefficient
and whether a high clustering coefficient is needed for a small–world network model.

4.2.4 The Clustering Coefficient

Many authors of small–world network models consider a high average clustering coefficient a salient
feature of a small-world network model [68, 174, 242] while others base their models on graphs
that do not necessarily have a high clustering coefficient:

1. Kleinberg used d-dimensional grids with a clustering coefficient of 0 as the basis for his small-
world models [126, 125]. On top of these grids, edges e = (v, w) are added with a probability
P (e) proportional to d(e)−α, where α > 0 is some constant and d(e) denotes the distance
between v and w in the grid. If the added random graph is sparse, the clustering coefficient
of this model tends to 0.

2. Andersen, Chung, and Lu consider a more general concept of clustering by composing a
local and a global (i.e., random graph) into a so-called hybrid graph [11, 53]. They offer
two different definitions of locality, one based on network flow [11] and another based on
counting the number of edge-disjoint paths up to a given length between pairs of vertices
[53]. A network is then said to be (k, l)-local if for every pair of vertices connected by an
edge there are at least k edge-disjoint paths of length at most l between these vertices. Both
of these local graph families do not need to show a high clustering coefficient; they rather
generalize the idea of the clustering coefficient to the one of locality.

Since all of these models were accepted by the scientific community it seems that a high average
clustering coefficient indicates a desired feature of the network, but it is not required itself. As
indicated by the many authors we have already cited, the general idea of the clustering coefficient
is to measure locality. As Newman points out, most social relationships are between people that
are somewhat near each other:

... most people are friends with their immediate neighbors - neighbors on the same
street, people that they work with, people that their friends introduce them to ...[173]

and Watts and Strogatz themselves state that the clustering coefficient was designed to measure
the ‘cliquishness of a typical neighborhood (a local property)’ [242].

4. The Small–World Phenomenon 37

We will thus now first discuss how locality in a graph can be defined and then analyze the rela-
tionship between the clustering coefficient and locality.

Degrees of Locality

Intuitively, a graph is local if there is a notion of distance between vertices and if the probability
that an edge exists is higher the shorter the distance it spans. We will call a network that is
generated by a process that prefers short, i.e., local edges, a local network. Of course there are
different degrees to which local edges can be preferred by the network generating process. In the
following we will formally define the notion of strongly and weakly local graphs.

Given a metric space that defines the distance vw between any two vertices v, w and a distribution
of vertices in this space, we assume that there is a network generating process that assigns a
probability to each edge to be realized. The graph resulting from such a network generating
process can be categorized as weakly or strongly local according to the following definitions:

Definition 4.2
1. A graph is called strongly local if – given any edge of the graph – it is more or at least

as likely that the connected vertices are in distance d than in distance d′ for all distances
d < d′. A special case of a strongly local network generating relationship is given in a k-next
neighborhood graph where every vertex v is connected to its kv next vertices. This is the case
for circulant graphs (s. Def. 4.1) on which the original small-world model was based, and for
(multidimensional) grids later models were based, e.g., [126].

2. A graph is called weakly local if two vertices in distance d are more likely to be connected
than two vertices in distance d′ for all distances d < d′.

The difference between the two definitions is explained by introducing two new measures, namely
the absolute and relative distance distribution: For most distributions of vertices in a metric space,
there will be many more vertices in distance d′ than in distance d < d′ for any given vertex v. For
example, if infinitely many vertices are placed equidistantly in a two-dimensional space, there are
4 · d vertices in distance d of any vertex v. Let #p(d) denote the number of possible edges, i.e.,
the number of pairs of vertices in distance d, and let #r(d) denote the number of realized edges
spanning distance d that exist in a given graph. The graph and its network generating process are
said to be strongly local if there are (expectedly) absolutely more edges between vertices in distance
d < d′ than in distance d′ for all d, i.e., if the absolute distance distribution given by the values
of #r(d) for all d is monotonically non-increasing. A network generating process is weakly local if
the probability that two vertices are connected increases as the distance between them decreases,
i.e., if the relative distance distribution defined as #r(d)/#p(d) is monotonically non-increasing for
all d7. If the number of edges in greater distances is monotonically non-decreasing, every strongly
local graph is also weakly local, but not vice versa.

In the following section we will show that the principle of locality, i.e., the preference to build local
edges, is prevalent in many real–world networks.

Local Graphs

It has been shown for some real-world networks where geometrical positions of the vertices are
known that indeed local edges are preferred:

7 For a real–world network where every distance d might occur only a few times it is of course necessary to bin
the edges linearly over the whole range.

4. The Small–World Phenomenon 38

1. Gastner and Newman could show that in the design of commuter transport networks and
sewage systems an intricate balance between the total geometric edge length and the travel
time from any vertex to a center vertex along the network paths is achieved [90]. Moreover,
in the networks they analyzed the total geometric edge length came close to the total edge
length in the minimal spanning tree (s. 3.5) of the network, implying that every vertex prefers
to be attached by its shortest edge to the growing network.

2. A second example is given by Frenken and van Oort who reviewed literature on the ’geometry
of innovation’ [88]. They summarize the findings described in the literature, and state that
knowledge production and innovation are mainly achieved by groups whose members live in
the same region. Additionally, they conducted a co-authorship analysis with respect to the
affiliations of authors where two co-authors are considered to have a ’regional’ cooperation if
their affiliation lies in the same state. With this technique, they analyzed publications in two
quite different scientific fields, namely ’aerospace engineering’ and ’biotechnology and applied
microbiology’. Their result is that scientific cooperations tend to be regional, although the
trend has decreased in the last years due to cheaper communication, and that collaborations
between academic and non-academic groups are more often regional than pure academic
research.

3. Another interesting finding has been achieved by Yook, Jeong, and Barabási on the locality
of the Internet, described on the level of routers and autonomous systems (AS) [254]. The
authors used data collected by Govindan and Tangmunarunkit that mapped AS addresses
to physical locations [99], and measured the probability P (e) that edge e exists as a function
of e’s geometrical length d(e). Their results clearly show that P (e) is proportional to 1/d, a
result that is explained by the costs of installing a physical link between routers that can be
assumed to be mainly growing linearly with its length.

For many other real-world networks that exist between vertices with a fixed position it can be
assumed with high certainty that most edges are local if the costs of building an edge are propor-
tional to the distance between the vertices, as for wires, tracks, streets, and also social relationships,
although to a lesser extent as anyone can verify from his or her own acquaintanceship network. In
the cases discussed so far, there was an explicitly given distance function between the vertices and
in these cases it is easy to check whether a graph is strongly or weakly local. In other networks,
it can be assumed that edges are more probable between somewhat ’near’ or ’similar’ objects, i.e.,
that an edge between two objects indicates that they are similar. Given a graph, it would be very
helpful to be able to decide whether there is an embedding of the vertices—and thus a distance
function—such that the edge set is strongly or at least weakly local, because only if the network
generating process is local in this sense, can network analysis algorithms, especially clustering al-
gorithms, be meaningfully applied to these networks. To understand the importance of this we
will first discuss some of these networks where no explicit distance function between the objects
is known and the reason we need to understand their structure, and then discuss whether the
clustering coefficient is able to measure locality in a given adjacency matrix.

Probably Local Graphs

Although preference of local edges seems to be settled for the above given networks, there are still
classes of interesting networks out there where no distance function between the objects is readily
available. We want to illustrate this important point with some examples:

1. A protein-protein interaction network represents the proteins of an organism by vertices,
and two vertices are connected by an edge if the represented proteins interact biologically

4. The Small–World Phenomenon 39

with each other, as introduced in 2.2. Since proteins often exert their function in the cell
in tightly packed conglomerates of different types of proteins, the understanding of protein–
protein interaction networks is an important step to understand the time and space dependent
functionality of cells. We will now explain why they are considered to be local graphs. It
is assumed that these networks have at least partly evolved by duplicating certain parts of
the genetic code that encodes proteins. Normally, the genetic code of a functional and vital
protein is not allowed to change by much and still maintain its functionality. But if it is
duplicated, the genetic code of the copy can be mutated without harming the functionality
of the original. Thereby the mutated protein may possibly lose some structural properties
and gain others [185]. It might also interact with the original itself. This mechanism has been
transformed into a dynamic network model that results in networks that are quite similar
to the real ones, a good indication that the model captures the essential network generating
process [219, 232]. If this mechanism models the evolution of protein-protein interaction
correctly, then it is clear that at least some nearby proteins in the protein-protein interaction
network are also similar to each other, e.g., on the level of their amino–acid sequence or their
3D structure. Under this model, we can assume a certain degree of locality in these networks.
Still, the similarity of proteins is not unambiguously defined; measures range from similarity
of the structure, to similarity of the amino-acid sequence they are made of, to the similarity
of their function in the cell. This makes it very difficult to position proteins in any metric
space or to define a coherent metric distance function between any two proteins such that all
of these different similarities are captured.

2. We have a similar problem in metabolic networks. Here, all the small molecules produced by
the set of enzymes of an organism are represented by vertices, and two vertices are connected
if an enzyme catalyzes the transformation of one molecule into the other [85, 116]. Because
the one is made of the other, it is clear that they share at least some structural properties and
thus, metabolites with a low distance in this network can also be assumed to be structurally
similar. And on the other hand, if two metabolites are very dissimilar than it is unlikely that
a small number of enzyme catalyzed steps will transform the one into the other. Nonetheless,
here it is also highly difficult to denote a metric distance function that captures the similarity
between all pairs of metabolites.

3. Krebs [135] and Clauset [54] discuss co-purchasing networks of books where books sold by
Amazon are represented by vertices. On the Amazon sites, every item’s page contains links
under the title: ’customers who bought this book also bought’. In a co-purchasing network
two vertices are connected by a (directed) edge if these links point from the one book to the
other. As Clauset has shown in his article, a clustering of these networks reveals subgraphs
consisting of very similar books, implying that edges are more likely between similar books.
But—as can be seen in the comparison between any two libraries—there is no such thing as
a unique categorization of books, and we know of no coherent quantitative measure that has
been proposed to judge the similarity of two books.

4. As a last example we want to note the web’s link structure [46, 8], modeled by networks where
websites are represented as vertices and two vertices are connected by a (directed) edge if
the one links to the other. Many algorithms have been proposed to harness this network
structure to find those pages that are related to each other and to a given query, and their
success is, without a doubt, amazing [44, 124, 153, 187]. We can thus safely assume that in
this network those pages that are similar by content are also near each other in the network
and that those pages that are near each other in the network are similar8. Still, it seems to be

8 Although there might exist different groups of websites concerning the same topic, e.g., if they are in different
languages.

4. The Small–World Phenomenon 40

impossible to give a precise, metric distance function that quantifies the semantic similarity
between any two websites.

For all of the above examples, human experts are often able to agree on the two most similar out of
any given three entities, e.g., for proteins or metabolites, books, or websites. Nonetheless, there is
no agreed upon distance function between the entities that would allow us to easily check whether
these networks are really local as defined by Definition 4.2. We just get indirect hints about
this locality, either because an assumed model gives good results in simulations or a clustering
algorithm is able to find dense subgraphs of similar entities. But of course, it would be better to
first have the information that a network is local, and later apply a clustering algorithm, especially
if similarity of the entities is deduced from the fact that they end up in the same cluster, as done,
e.g., in [188, 201].

We thus assume that there is a similarity space—that is maybe not metric—in which these entities
are positioned and that humans are at least partly able to agree on a partial ordering of the entities
based on their similarity. We also assume that in the networks sketched above, edges are much
more likely between similar entities than between non-similar entities, i.e., our basic assumption
is that these systems also prefer to build local edges—but we cannot prove it because we do not
know the position of the vertices in the similarity space.

In summary, locality, in the sense of preferring edges between objects that are somewhat near
each other, seems to be an important network generating process. The question is now, given the
adjacency matrix of a graph, can we detect whether there is some notion of distance between the
vertices and whether the network mainly consists of local edges? Most people would say that this
is exactly what the clustering coefficient does (although Watts and Strogatz have never claimed
this). We will first discuss some findings where the clustering coefficient is correlated with a lo-
cal network generating process and then show that, nonetheless, a strong correlation between the
clustering coefficient and the idea of locality cannot be found, i.e., that not every strongly local
graph has a high clustering coefficient.

The Correlation Between Locality and the Average Clustering Coefficient

In many settings where vertices are positioned in a metric space and every vertex is connected to
its k next neighbors, the average clustering coefficient can be expected to be high:

1. It was already shown that simple circulant graphs have a clustering coefficient of 3/4 in the
limes and it is clear that these graphs are strongly local if the graph is embedded on a ring
such that every vertex is connected to its k next neighbors.

2. In [173, 174] a d-dimensional grid model is developed in which a vertex at position {x1, x2, · · · , xd}
is connected to its k next neighbors in every single dimension i, as sketched for d = 2 in
Fig. 4.3. With this simple metric, the clustering coefficient is given by [174]:

cc(v) =
3(k − 2d)

4(k − d) , (4.6)

Thus, in the limes of k, the clustering coefficient approaches 3/4 for every number of dimen-
sions d. This kind of graph is also strongly local.

3. A less deterministic, local graph family could also be shown to have a high clustering co-
efficient: let Gud(n, r) denote the so-called unit-disk graph of n vertices that are positioned

4. The Small–World Phenomenon 41

(a)

Fig. 4.3: In the model of [174] every vertex is connected to its k next neighbors on each single dimension.

uniformly at random in some 2-dimensional area. Let dg(v, w) denote the geometric distance
between any two vertices in this setting. In a unit-disk graph, (v, w) is in E if dg(v, w) ≤ 1,
i.e., a vertex is connected to all vertices that lie within a radius of 19. Since the distance
function is symmetric, (v, w) ∈ E ⇔ (w, v) ∈ E. In [83] we have shown that a unit-disk
graph in 2D with a homogeneous distribution of vertices has an average clustering coefficient
of 0.58.

On the other hand, d–dimensional grids have a clustering coefficient of 0. Of course, this is
only due to the peculiar distribution of vertices in space and a network generating process that
stops producing local edges exactly when all vertices are connected to their 2d neighbors, i.e.,
without producing any triangles. Both the distribution and the network generating process are
very unrealistic in any real–world network. Thus, we will analyze in the following what happens
if every vertex is connected to more than 2d neighbors in a d-dimensional grid and we will show
that also in this case there is no strong correlation between a high clustering and a local network
generating process.

The Clustering Coefficient of Vertices in d-Dimensional Grids

Here we will show that there are strongly local graphs and a metric such that the clustering
coefficient approaches (3/4)d for a fixed dimension d. Let ~x(v) = {x1, x2, . . . , xd} denote the
position of v in a d-dimensional grid. For every two vertices, d∞(v, w) is given by

d∞(v, w) = max{|xi(w)− xi(v)| |1 ≤ i ≤ d}. (4.7)

Let Qd,∞(x, k), x ∈ N denote a finite, equilateral grid of n = xd vertices where every vertex v is
connected to all vertices w with d∞(v, w) ≤ k, and let Qd,∞(k) denote an infinite grid in which
every vertex v is connected to all vertices w such that d∞(v, w) ≤ k. Note that the use of an
infinite grid allows neglecting any boundary effects, which will be discussed later.

We will now determine the clustering coefficient of any vertex v in the infinite grid for a fixed
dimension d. To do so, it is enough to concentrate on a subgrid Gd,∞(2k + 1, k), i.e., a grid that
contains all direct neighbors of one vertex v in this metric. For simplicity, the positions of the
vertices in the grid are numbered (i, j), from 1 to 2k + 1 in every dimension. In the following, we

will show that the clustering coefficient of v asymptotically approaches
(

3
4

)d
for lim k →∞.

9 Such a graph is also called a random geometric graph [197]

4. The Small–World Phenomenon 42

S(x ,x)1a 2a

S(x ,x)1a 2b S(x ,x)1b 2b

S(x ,x)1b 2a

x1a x1b

x2a

x2b

(a)

1

2

3
3

2

1

(b)

Fig. 4.4: (a) The 2-dimensional grid is divided into 4 subgraphs, each of size (k +1)× (k +1). (b) The
outermost vertex 1 of one subgraph is connected to all vertices in the square of (k + 1)× (k + 1) vertices
(besides itself). Its direct neighbors (2, 3) contribute (k + 2)(k + 1) − 1 edges, and in general a vertex at
position (i, j) in S(x1a, x2a) contributes a degree of (i + k)(j + k) − 1.

Lemma 4.1
The average clustering coefficient of any vertex in Qd,∞(k) approaches (3/4)d for k →∞.

The special case of d = 2 is shown in Fig. 4.4. The degree of the middle vertex is simply given by
(2k+1)2−1, and by (2k+1)d−1 for the general case. In the special case of d = 2 we divide the grid
in every dimension xi into two intervals xia, xib of length k + 1 that overlap at the middle vertex
in that dimension. This results in four subgrids S(x1a, x2a), S(x1a, x2b), S(x1b, x2a), S(x1b, x2b) of
size (k+1)× (k+1) for which we now calculate the sum of the degrees of the vertices. To simplify
the calculation we will re-number the vertices in each of the subgrids from (1, 1) to (k + 1). Note
that due to this re-numbering vertex (k+1, j) in subgrid S(x1a, x2a), is the same vertex as (1, j) in
S(x1b, x2a), and that v, the vertex at (k+1, k+1) in S(x1a, x2a) is the same vertex as (1, k+1) in
S(x1b, x2a), as (k + 1, 1) in S(x1b, x2a), and as (1, 1) in S(x1b, x2b). This observation can be easily
generalized for d > 2. Let S(a) denote the subgrid S(x1a, x2a, . . . , xda) and let S(a, i) denote the
subgrid S(x1a, . . . , xib, . . . , xda) . Every vertex positioned at k+1 in some dimension xi in subgrid
S(a) is also contained in subgrid S(a, i) at position 1 in xi. Thus, if a vertex is at position k + 1
in 0 ≤ z ≤ d dimensions in subgrid S(x1a, . . . , xda) it is also contained in 2z − 1 other subgrids.

Coming back to the special case of d = 2, it is easy to see that every vertex (i, j) in S(a) has edges
to all other vertices in a subgrid of size (i+k)× (j+k)−1 (1 has to be subtracted since the vertex
is not connected to itself). Thus, the sum of the degrees of all vertices in subgrid S(a) is given by:

∑

w∈S(a)

deg(w) =

k+1∑

i=1

k+1∑

j=1

(i+ k)(j + k)− 1 (4.8)

=

k+1∑

i=1

(i+ k)

(

(k + 1)k +
(k + 2)(k + 1)

2

)

− (k + 1)2 (4.9)

4. The Small–World Phenomenon 43

=

(
3

2
k2 +

5

2
k +

3

2

)2

− (k + 1)2 (4.10)

=

(
9

4
k4 +

15

2
k3 +

39

4
k2 +

11

2
k − 5

4

)

(4.11)

The sum of the degrees of all vertices w ∈ V in the whole grid is now obtained by multiplying
∑

v∈S(a) deg(v) by the number of subgrids (22) and subtracting the correct number of degrees of
those vertices that were count multiply. Note that if vertex w is at position k + 1 in z ∈ 0, 1
dimensions it is count 2z times and that every dimension contributes a factor of xi + k to the
degree of w. It thus follows that:

∑

w∈V

deg(w) = 22
∑

w∈S(a)

deg(w)−
k∑

j=1

((2k + 1)(j + k)− 1)− 3((2k + 1)2 − 1) (4.12)

= 4
∑

w∈S(a)

deg(w)− 3k3 − 9

2
k2 − 3

2
k + k + 1− 12k2 − 12k (4.13)

= 9k4 + 27k3 +
45

2
k2 +

19

2
k − 4 (4.14)

Note that by now every edge in the grid is counted twice and that furthermore also the edges
between v and every other vertex are still contained in the sum. To calculate e(v), i.e., the number
of edges between neighbors of v, the degree of v has to be subtracted twice and the result has to
be divided by 2, yielding

e(v) =
9k4 + 27k3 + 37

2 k
2 + 11

2 k − 4

2
. (4.15)

Thus, the clustering coefficient of v is given by:

cc(v) =
9k4 + 27k3 + 37

2 k
2 + 11

2 k − 4

16k4 + 32k3 + 16k2
(4.16)

which asymptotically approaches 9/16 for lim k →∞.

Let now d > 2 denote some fixed value. Remember that the degree of v is given by (2k+1)d− 1 =
∑d

i=1

(
d
i

)
(2k)i. The denominator of the clustering coefficient of any vertex v in the infinite grid is

given by deg(v)(deg(v)− 1), i.e,

deg(v)(deg(v)− 1) =

d∑

i=1

d∑

j=1

(
d

i

)(
d

j

)

(2k)i+j −
d∑

i=1

(2k)i. (4.17)

To compute the numerator, the grid is again sliced into 2d subgrids by cutting each dimension in
halves of length k+ 1, overlapping at the middle vertices. The numerator is then composed of the
d sums over each dimension for each of the 2d subgrids, where each of the dimensions contributes
∑k+1

xi=1(xi + k) = (k+1)(3k+2)
2 , i.e., the numerator is dominated by

2d ((k + 1)(3k + 2))d

2d
−M =

d∑

i=0

d∑

j=0

(
d

i

)(
d

j

)

2d−j3jki+j −M, (4.18)

where M denotes the sum of the degrees that are multiply count. M is given by:

M =

d∑

x=0

(2x − 1)(2k + 1)x

(
(k + 1)(3k + 2)

2

)d−x

. (4.19)

4. The Small–World Phenomenon 44

Vertices in fixed position k + 1 in x dimensions contribute a degree of (2k + 1)x
(

(k+1)(3k+2)
2

)d−x

and are counted 2x times. The largest term in M in dependence of k comes from those vertices
that are at position k + 1 in exactly one dimension. This term has an exponent of k2d−1.

Thus, cc(v) is a fraction of two polynomial functions that are differentiable for d, k > 0 for all
values of k in the interval from [1,∞[, and—for fixed d—the coefficients of every term are fixed.
By the rule of l’Hospital, the limes of the fraction of two polynomials for x → ∞ is given by
the fraction of the coefficients of the highest terms of both functions. The highest term in the
numerator is clearly given by 3dk2d, and the highest term of the denominator is 22dk2d. It follows

that the asymptotic value of cc(v) in a Qd,∞(2k+1, k) grid is
(

3
4

)d
. Thus, for any fixed dimension

d, and k →∞, the clustering coefficient of vertices in an infinite grid approaches (3/4)d. Note that
infinity is not necessary for this argument: it is valid for any vertex with a distance of at least k+1
to the border of the grid; such a vertex will be called a proper vertex. For any fixed d and k and
n = (xk)d, x ∈ N, the fraction of proper vertices is given by ((x − 2)/x)d. Even if the clustering
coefficient of non-proper vertices were 1, for any fixed dimension d and any value cc > (3/4)d there
is a k and an x such that for all Q′ = Qd,∞(x′, k′) with x′ > x and k′ > k the average clustering
coefficient of Q′ is smaller than cc, which concludes the proof.

In summary, for any value cc > 0 there is a strongly local graph with an average clustering
coefficient below this value as stated in the following theorem.

Theorem 4.1
For every value cc > 0 there is a finite, equilateral grid Qd,∞(x, k) with an average clustering
coefficient cc(Qd,∞(x, k)) smaller than cc.

Of course, Watts and Strogatz did not only evaluate the absolute clustering coefficient, but also
compared it with that of a corresponding random graph. A corresponding random graph has a
clustering coefficient of p ≃ m/(n2/2). We will now show that the relation between the clustering
coefficient of a local graph and that of a corresponding random graph can also grow quite slowly.
For this, let Qd,∞∗(x, k) denote an equilateral cube with boundary conditions such that vertices
are connected if d∞∗(v, w) ≤ k with d∞∗(v, w) defined as:

d∞∗(v, w) = max{j|(xi(w) + j) mod x = xi(v), 1 ≤ i ≤ d}. (4.20)

In such a ’wrapped’ grid, every vertex is a proper vertex if k is less than or equal to x/410. Let now
k be exactly x/4. For such a grid, n = xd and m ≃ n · (x/2)d/2 since every vertex is connected to
all vertices in a cube with side length x/2, implying that p ≃ 1/2d. Thus, the relation between the
clustering coefficient and p for any given Qd,∞∗(x, k) is approximately (3/2)d. Although this is an
exponentially growing function, the relation between the values will only be around 50 for d = 10.
Thus, also the relation between the clustering coefficient in the network and its corresponding value
in a random graph cannot be strongly correlated with locality in the sense of Definition 4.2.

In summary, if d is low, the clustering coefficient itself may be high, but there are also cases where
the clustering coefficient of a corresponding random graph is high, making it impossible to decide,
given only the clustering coefficient, whether the network generating process was random or local.

With this we have shown that locality of a graph is not in all cases sufficient to yield a high clustering
coefficient or at least a clustering coefficient that is much higher than that of a corresponding
random graph.

10 Otherwise, our above made analysis will not hold because the corners of the neighborhood of one vertex will
also be connected to each other due to the boundary condition.

4. The Small–World Phenomenon 45

Of course, the graphs for which we have shown this effect are still quite artificial, but since we
aimed to answer the question of whether a high clustering coefficient is sufficient or necessary to
show locality in a graph, it is sufficient to show one counterexample where the network generating
process is local, but the clustering coefficient is not high, or at least not high with respect to that
in a corresponding random graph.

The question is now whether a graph with a high clustering coefficient is always local, i.e., if there
is always an embedding E in a metric space such that the network–generating relationship is local.
This question is difficult to answer in general since an average clustering coefficient does not give
much information about the graph. As already mentioned above, a unit-disk graph has an expected
average clustering coefficient of 0.58 if the vertices are distributed uniformly at random (s. 9.3.2).
However, given the adjacency matrix of a graph, it is NP-hard to decide whether the vertices
can be embedded and a radius r can be found such that the edges constitute the corresponding
unit-disk graph with respect to this embedding and this radius [43]. A more relaxed question,
namely, whether there is an embedding of the vertices and two radii r, r′ such that all vertices
within distance r are connected and all vertices with distance larger than r′ are not connected and
this set of edges equals the given one, is also NP-hard to decide [138]. Similarly, there is a way to
construct something like a minimal spanning tree (s. 3.5) in a unit-disk graph, the so-called local
minimum spanning tree 11. We could show that also here it is NP-hard to decide whether a given
graph can be embedded such that the set of edges constitutes the local minimum spanning tree of
that embedding (s. 9.3.4) [63]. Based on these findings, it seems hard to make a general statement
whether a given graph is strongly or at least weakly local given the adjacency matrix, and much
less if it is only known that it has a high clustering coefficient.

In summary, not all small–world network models are based on graphs with a high clustering
coefficient. Those models that do not explicitly require a high clustering coefficient, nonetheless
focus on the idea of locality. Still, as we could show here, there is no strong correlation between
the concept of locality as defined in 4.2 and the clustering coefficient although for low dimensions
it is likely that a local graph, such as a k-next neighborhood graph or unit–disk graph, results in a
high clustering coefficient. What remains is that the so-called local part of all small–world network
models has a larger diameter than the resulting small–world network, after a sparse random graph
has been added to it.

4.2.5 Properties of Classic Small–World Network Models

The common ground of all the accepted small-world network models is thus given by the following
properties:

1. Every one of these models is composed of two edge sets on the same set of vertices, where
one of them is a sparse random edge set that is created either by rewiring a subset of
edges or by adding edges with a certain probabilistic scheme.

2. The resulting graph has a strictly lower diameter and average distance than each of the
subgraphs constituted by one of the edge sets.

We conclude that this smallness, induced by adding a sparse random edge set to a graph with a
large average distance, is the point most small–world network models have focused on and that

11 A local minimum spanning tree (LMST) is not necessarily a tree [158, 51]. Here, every vertex computes the
minimum spanning tree of the subgraph of vertices that are within distance k. In the LMST+ (LMST−)
graph, an edge is contained in the LMST if both vertices agree (at least one of the vertices states) that it is in
the minimum spanning tree of their (its) local neighborhood.

4. The Small–World Phenomenon 46

seems to be the essence of the small-world network models proposed so far. Since local graphs are
one of the few graph families with a diameter larger than that of a corresponding random graph,
they are just a special graph class that shows the small-world effect when combined with some
random edges, and the clustering coefficient is one measure that is likely to measure locality.

In light of this review, we suggest using the term small-world phenomenon for the drop in diameter
that occurs when a certain class of graphs is combined with a sparse random graph. In the
following section we will formally define the small-world phenomenon and describe properties of
hybrid graphs that show the small-world phenomenon. Furthermore, we will give a formal analysis
of the diameter of these combined graphs in dependency of the number of edges in the random
edge set.

4.3 Hybrid Graphs Showing the Small–World Phenomenon

Based on the analysis given above, our generalized framework describes graphs that show the small–
world phenomenon, defined as the substantial decrease in the diameter by building hybrid graphs
out of two graph components where each of the components alone has a higher diameter than the
hybrid graph in terms of the asymptotic growth. In the following we will restrict ourselves to those
hybrid graphs where one component is a random graph from the G(n, p) family. We will show that
the small–world phenomenon can be found in a large family of hybrid graphs with different graph
families building the non–random graph component. We introduce a new characteristic for graph
families, the so–called regular decomposability, and prove that it is sufficient for any hybrid graph
to show the small–world phenomenon when the non–random graph family has this property. We
also give strong upper bounds on the diameter of the hybrid graph in dependence of p and the
structure of the non–random graph component.

In order to do so, we will provide some necessary definitions in 4.3.1, followed by the formal
definition of the model in 4.3.2.

4.3.1 Definitions

A graph family G(n) denotes any set of graphs generated by the same algorithm and parameterized
by the number n of vertices in it and some extra parameters, if needed (s. 3.4). In the case of
deterministic graph families and a fixed set of parameters only one specific graph is generated,
whereas in graph families generated partly by probabilistic processes, G(n) is defined as the set of
all possible realizations. Statements about G(n) are then interpreted as statements about expected
characteristics of this set. In this chapter we will use the notation G(n) interchangeably for the
whole set or a specific realization of this set.

A special case of grid graphs (3.4.1), a regular d–dimensional, equilateral grid is denoted by Gd(a)
and defined as a set of vertices placed on integer positions in d dimensions. a ∈ N denotes
the number of vertices placed in each of the d dimensions. The number of vertices in this grid
is then given by n = ad, where every possible position—identified by a d–dimensional vector
(1 ≤ b1 ≤ a, 1 ≤ b2 ≤ a, . . . , 1 ≤ bd ≤ a)—is occupied by one vertex.

We will use the following theorem on the diameter of random graphs G(n, p) [35]:

Theorem 4.2
If pn/ log n→∞ and log n/ log(np)→∞ then D(G(n, p)) is asymptotically equal to logn/ log(np)
w.h.p.12.

12 The acronym w.h.p. stands for with high probability, and it states that the probability that the specified event

4. The Small–World Phenomenon 47

Note that this theorem implicitly includes that the random graph is connected with high proba-
bility. To simplify the following proofs we will use a stricter version of the theorem and require
additionally that p ≥ (log n)1+ǫ/n, where ǫ > 0,∈ R.

4.3.2 Formal Definition of the Small–World Phenomenon

The following definition of the small–world phenomenon describes the decrease in the diameter
by combining two graph components that each have a higher diameter in terms of asymptotical
growth:

Definition 4.3
A hybrid graph family is defined as any combinationGLR(n) of some graph family GL(n) and a ran-
dom graph family GR(n). GLR(n) shows the small–world phenomenon if the diameter D(GLR(n))
is scaling at most polylogarithmically and if the following relations hold for n→∞:

D(GL(n))

D(GLR(n))
→∞ and

D(GR(n))

D(GLR(n))
→∞, (4.21)

i.e., if the diameter of each graph component alone grows faster than the diameter of the hybrid
graph.

We will now present a rather general proof pattern with which an upper bound on the diameter
of certain hybrid graphs can be given. The number of required properties of these hybrid graphs
is very small and thus a large family of hybrid graphs falls into this category of graph families
showing the small–world phenomenon. For didactic purposes we start with the simple model
of a d-dimensional grid combined with a sparse G(n, p) instance as described by Newman and
Watts [174]. This model will then be generalized to a large family of hybrid graphs that fall into
the above given definition. We will denote such a hybrid graph by Gd(n, p), which is given by
the combination of a regular grid Gd,∞(d

√
n, 1), for simplicity denoted by Gd(

d
√
n) here, and a

random graph G(n, p). Note that a :=d
√
n denotes the width of the grid in every dimension.

Since the basic network is a d–dimensional grid, the diameter of this component without any added
random edges will scale with a − 1 for a fixed dimension d: D(Gd(a)) = d · (a − 1). If the added
random graph is built with p greater than or equal to (log p)1+ǫ/n then the combined graph will
have a diameter that is dominated by the diameter of the random graph and thus is asymptotically
at most log n/ log(np) (Theorem 4.2). Thus, a hybrid graph with a dense random graph component
does not show the small–world phenomenon as it is defined above.

In the following we will show what happens in the regime where p lies below (log p)1+ǫ/n and
describe the regime in which the diameter of the hybrid graph will scale at most (poly–) logarith-
mically.

4.3.3 The Diameter of Gd(n, p)–Graphs

For the above given model of a graph Gd(n, p) the following lemma holds:

will not occur is less than 1/n, where n is a parameter that describes the size of the sample. In this case,
w.h.p. states that choosing any graph from G(n, p) at random, the probability that this graph has a diameter
higher than that given by Theorem 4.2 is less than 1/n.

4. The Small–World Phenomenon 48

Lemma 4.2
For p = 1

cn , c ∈ R
+ the diameter of Gd(n, p) is asymptotically bound by at most

d ·
(⌈

d
√

c · (log n)1+ǫ
⌉

− 1
)

·
(

log n

(1 + ǫ) log log n− log 2
+ 1

)

(4.22)

The proof proceeds in four steps:

1. The graph Gd(n, p) is partitioned into nS connected d–dimensional equilateral subgraphs
Si, 1 ≤ i ≤ nS with side length l such that each subgraph contains at least s = ld ≥
c · (log n)1+ǫ vertices (Figure 4.5).

2. For any a, only ⌊a/l⌋ full subgraphs per dimension can be built. n∗ denotes the number of
all vertices contained in a full subgraph. We will show that the n − n∗vertices that are not
contained in any full subgraph constitute a vanishing fraction of all vertices for n→∞. We
will thus base our proof on a reduced regular d–dimensional grid of size n∗ that contains only
the full subgraphs.

3. We construct a supergraph GS(nS) = (S,E′) where each vertex vi ∈ S uniquely represents
the subgraph Si for 1 ≤ i ≤ nS . Edge e = (vi, vj) is member of E′ iff13 there is at least one
random edge from any vertex in Si to any vertex in Sj . We will prove that Theorem 4.2 can
be applied to GS(nS).

4. GS(nS) is then expanded to gain a bound on the diameter of the original but reduced
graph Gd(n

∗, p). The diameter of Gd(n
∗, p) is bound by the product of the diameter of the

subgraphs D(Si) and the diameter D(GS). We will show that there are numerous partitions
of Gd(n, p) into nS subgraphs. Especially, for any pair of vertices v, w there is at least one
partition of Gd(n) such that both, v and w, are contained in full subgraphs. Since every
supergraph based on a possible partition obeys Theorem 4.2, we will therefore have shown
that the whole graph Gd(n, p) obeys Lemma 4.2 and the case is proven.

We will start by partitioning a Gd(n, p) graph. Let Si, 1 ≤ i ≤ nS denote an equilateral subgraph

that has a side length of l =
⌈

d
√

c · (log n)1+ǫ
⌉

in each dimension. The number s of vertices

contained in one (full) subgraph is bound by:

c · (log n)1+ǫ ≤ s =
⌈

d
√

c · (log n)1+ǫ
⌉d

< 2d · c · (log n)1+ǫ (4.23)

Gd(n, p) is partitioned into subgraphs as shown in Fig. 4.5 for a 2-dimensional example. Obviously,
incomplete subgraphs exist if a/l is not an integer. The leftover vertices can be placed arbitrarily
between full subgraphs as indicated in Fig. 4.5(b). For simplicity we will consider instead of Gd(n)
a smaller hyper-cube Gd(n

∗) containing all full subgraphs. Note that now a∗ with d
√
n∗ = a∗ ≤ a

is the maximal integer smaller than a that is a multiple of l. Let q = a∗/l denote the number of
subgraphs in one dimension.

The relative fraction of vertices not contained in full subgraphs is approaching 0 for n→∞:

n− n∗
n

≤ (l · (q + 1))d − (l · q)d

(l · q)d
(4.24)

=

(
q + 1

q

)d

− 1 (4.25)

13 iff is used throughout the text as a short-hand for if and only if.

4. The Small–World Phenomenon 49

l l l

l

l

l

a mod l

a mod l

(a)

l l l

a

a mod l

(b)

Fig. 4.5: (a), (b): Different valid partitions for a 2–dimensional grid with side length a. Full equilateral
subgraphs with side length l may be placed arbitrarily as long as their number is maximal. Therefore
numerous partitions exist and for each pair of vertices numerous partitions can be found where both are
contained in full subgraphs.

Since q → ∞ for n → ∞, the relative fraction of ignored vertices is asymptotically 0. Note that
nS = n∗

s ≥ n
2d·c·(log n)1+ǫ →∞. Thus for n→∞ we may safely use

n ≥ n∗ > n/2 (4.26)

In Gd(n
∗, p) there are s2 possible random edges between any vertex from subgraph Si and any

vertex from subgraph Sj . Each of these edges exists independently with probability p. It follows

that for GS the probability pS is exactly s2

cn .

We will now prove that Theorem 4.2 can be applied to GS(n). A basic observation is that for
n → ∞, also nS → ∞. Additionally, it has to be shown that pSnS

log nS
→ ∞ and log nS

log(nSpS) → ∞ for
nS →∞.

Observe that for all nS > 1, n∗ > n/2 (eq. 4.26) the following two equations hold:

pS · nS

log nS
=

s2

cn
· n

∗

s
· 1

log n∗

s

(4.27)

≥ s

2c(log n∗ − log s)
(4.28)

≥ (log n)1+ǫ

2 log n− 2 log s
(4.29)

such that pS ·nS

log nS
→∞ for n→∞ and

log nS

log(pS · nS)
=

log n∗

s

log s·n∗

cn

(4.30)

≥ log n/2− log(2d · c(log n)1+ǫ)

log(2d(log n)1+ǫ)
(4.31)

4. The Small–World Phenomenon 50

such that also log nS

log(pS ·nS) → ∞. By Theorem 4.2 we know that GS has thus a diameter that

approaches log nS

log(pS ·nS) asymptotically. Regarding that n∗/n > 1/2 this is bound by

D(GS) =
log nS

log(pS · nS)
(4.32)

≤ log n

log s
2c

(4.33)

≤ log n

(1 + ǫ) log log n− log 2
(4.34)

≤ log n

log log n
, (4.35)

where the last inequality is valid for all n with ǫ log log n > log 2.

We will now expand GS(n) in order to get an upper bound for the diameter of Gd(n, p). Let v
and w be two vertices in the original graph Gd(n, p). First, note that Gd(n, p) can be reduced
to Gd(n

∗, p) such that v and w are contained in Gd(n
∗, p). This implies that there is a path

in GS(n) from subgraph Si containing v to subgraph Sj containing w with a length of no more
than D(GS). Let the path from subgraph Si to Sj be denoted by (e1, e2, ..., ek). This path can
now be expanded to a path in the original graph Gd(n, p) that connects v with w by first joining
the path from vertex v to that vertex v′ from Si that is attached to e1. This will at most take

D(Si) = d · (
⌈

d
√

c · (log n)1+ǫ
⌉

− 1) steps. For every edge ei = (vi, wi) that enters subgraph Sx

and edge ej = (vj , wj) that leaves this subgraph on the way to subgraph Sj , an additional path is
added to connect wi with vj . Since both, wi and vj , are in the same subgraph, this path is not
longer than D(Sx). Thus, the distance of v, w in the original graph Gd(n, p) is asympotically given
by at most

D(Si) · (D(GS) + 1) ≤
d ·

(⌈
d
√

c · (log n)1+ǫ
⌉

− 1
)

·
(

log n
(1+ǫ) log log n−log 2 + 1

)

With this, Lemma 4.2 is proven.

The simple model was restricted to grid graphs in which every vertex has degree 4. A straight
forward generalization allows enlarging the degree of the vertices in the underlying grid graph as
we will show now: as stated in Lemma 4.2, the diameter of a Gd(n, p) graph is asymptotically
at most D(Si) · (D(GS) + 1). Let Gd(n, k, p) denote an extended regular grid, in which every
vertex is connected to its k next neighbors as given by the graph theoretic distance in a simple
d-dimensional grid, combined with an additional G(n, p) graph. Since the diameter D(Si) of the
subgrids depends only on the degree of the vertices in the underlying grid graph the diameter of
the hybrid graph Gd(n, k, p) can simply be reduced by adding more edges to the grid. For example,
D(Si) is reduced to 1 if for p = 1

c·n edges from every vertes to its c · (log n)1+ǫ next neighbors are
added, resulting in a combined graph Gd(n, (log n)1+ǫ, p) with a diameter of at most D(GS).

4.3.4 Generalizing the Family of Hybrid Graphs Showing the Small–World Phenomenon

The simple model allowed only grid graphs as the non–random graph component, and restricted p
to be 1/cn. We will now show that the model can be substantially generalized:

1. The probability p of the added random graph G(n, p) can be as small as 1
f(n)·n as long as

(log n)1+(ǫ/2) ≤ f(n) ≤ n1−δ for some constants δ, ǫ > 0 and n→∞.

4. The Small–World Phenomenon 51

2. The basic regular d–dimensional grid can be replaced by other graph families, as long as they
are regularly decomposable, a new property that will be introduced below.

These two points lead to a generalized theorem on the diameter of hybrid graphs showing the
small–world phenomenon. We begin by discussing the first point, the generalization of the random
graph component.

Generalizing the Random Graph Component

In section 4.3.3 p was restricted to be 1/cn. To allow for smaller p = 1
f(n)·n , the size s of the

subgraphs has to be chosen larger such that Theorem 4.2 can be applied. Let again nS denote the
number of vertices and ps denote the probability of an edge in GS . For simplicity we assume that
nS = n/s ∈ N and p · s · n = (log n)1+ǫ ∈ N. The general case follows the argument above. The
number of nodes in each subgraph will be chosen such that

s = (log n)1+ǫ

p·n = f(n) · (log n)1+ǫ. Again, Lemma 4.2 requires the validity of

pSnS

log nS
→∞ (4.36)

and
log nS

log(nSpS)
→∞ (4.37)

As before pS = s2 · p. We first analyze the condition given in equation 4.36:

pSnS

log nS
= s2 · p · n

s
· 1

log nS
(4.38)

> s · p · n

log n
(4.39)

= (log n)ǫ (4.40)

which approaches infinity for increasing n. The second condition (4.37) simplifies to

log nS

log(nSpS)
=

log
(

n
s

)

log
(

n
s · s2 · p

) (4.41)

=
log

(n
f(n)

(log n)1+ǫ

)

log(log n)1+ǫ
(4.42)

=
log

(
n

f(n)

)

log(log n)1+ǫ
− 1 (4.43)

which tends to infinity for f(n) ≤ n1−δ, δ > 0. Therefore both conditions are met and Theorem 4.2
can be applied to GS . If f(n) is chosen to be lower than (log n)1+(ǫ) then the random graph
component will be connected and Theorem 4.2 can be applied directly. Such, f(n) is also restricted
from below to be larger than (logn)1+(ǫ). This result is summarized in the following lemma.

Lemma 4.3
For any function (logn)1+(ǫ/2) ≤ f(n) ≤ n1−δ, ǫ, δ > 0 and p = 1

f(n)·n , the grid graph within a

Gd(n, p) graph can be partitioned into nS = n
s subgraphs Si of size s = f(n) · (log n)1+ǫ such that

4. The Small–World Phenomenon 52

the diameter of Gd(n, p) approaches asymptotically (Eq. 4.43)

d ·
(⌈

d
√

c · (log n)1+ǫ
⌉

− 1
)

︸ ︷︷ ︸

D(Si)

·
(

log(n/f(n))

log(log n)1+ǫ

)

︸ ︷︷ ︸

D(GS)

. (4.44)

Possible Replacements of the Regular Grid Graph

In the general proof pattern shown above, the following two properties of regular grid graphs
are needed to bound the diameter of the resulting hybrid graph: first, regular grid graphs are
partitionable for every n into Θ(n/s(n)) subgraphs of size s(n) for any function s(n) ≤ n such that
each of these subgraphs is a connected graph; second, for any pair of vertices v, w there must be
at least one partition such that v and w are contained in any of the subgraphs.

To abstract from this special graph family to all graph families with these two properties we
introduce the following definition:

Definition 4.4
Let GL(n) be a graph family with the following two properties:

1. GL(n) is partitionable for every n into Θ(n/s(n)) subgraphs of size s(n) for any function
s(n) ≤ n such that each of these subgraphs is a connected graph.

2. For any pair of vertices v, w and every n there must be at least one partition such that v and
w are contained in proper subgraphs.

GL(n) is called a regularly decomposable graph family. For graph families with a stochastic gener-
ating process it is enough to show that such a partition exists w.h.p..

Note that every graph family GL(n) is regularly decomposable for at least s(n) = 1. Let smax(n)
be that function s′(n) that has the fastest growth of all functions s(n) for which GL(n) is regularly
decomposable. If now smax(n) = k, k ∈ N for GL(n) and GL(n) replaces the regular grid then
it is clear that the size of the subgraphs is also at most k to obey Θ(n/s). This implies that

the probability p of the added random graph must be at least O
(

(log n)1+ǫ

n

)

in order to achieve

a supergraph that obeys Theorem 4.2. It follows that the diameter is dominated by the diameter
of a random graph because we add a dense random graph. By definition of the small–world
phenomenon, such a graph family will not show this phenomenon in the hybrid graph model.

We conclude this section with a theorem on the diameter of generalized small–world models com-
bining a regularly decomposable graph family with a sparse random graph:

Theorem 4.3
Let GL(n, p) denote the combination of instances of a regularly decomposable graph family GL(n)

and a G(n, p) graph where p = 1
f(n)·n , 1

(log n)1+(ǫ/2) ≤ f(n) ≤ 1
n1−δ , and ǫ > 0, δ > 0. D(s(n, p))

denotes the maximal diameter of any subgraph of GL(n, p) with size s(n, p) = (log n)1+ǫ

p·n , ǫ > 0, the

diameter of GL(n, p) is asymptotically at most:

D

(

s

(

n,
1

f(n) · n

))

·
(

log(n/f(n)

log(log n)1+ǫ

)

︸ ︷︷ ︸

D(GS)

(4.45)

4. The Small–World Phenomenon 53

4.3.5 Proving Regular Decomposability

We now want to discuss the connection between regularly decomposable graph families and local
graph families. As indicated before, the classic small–world models are based on local graph families
but our proof pattern is based on the notion of regularly decomposable graph families. We will
first introduce the idea of locally clustered graphs, and then show that at least some of these locally
clustered graphs are at the same time regularly decomposable.

A graph G or a graph family G(n) is clustered if (for every n) there is a partitioning such that
the fraction of realized edges within the subgraphs given by the partition is much higher than the
fraction of realized edges between the subgraphs, i.e., the subgraphs are locally dense and globally
sparse. This definition is quite broad because there are many different measurements that try to
quantify how good such a clustering is, e.g., coverage, intra– and inter–cluster conductance (for
an overview see [89]), or modularity [93], to name but a few. Here, we just want to concentrate
on the locally dense vs. globally sparse part of that definition that is the intuive basis for most
of these measures. An embedded graph or a graph family G(n) is locally clustered if at least one
partition of the space in which the graph is embedded exists such that the subgraphs within the
resulting subspaces are locally dense and the graph is globally sparse. If a graph is only given by
its adjacency matrix and the vertices have no position in space, the graph is said to be potentially
locally clustered if it can be embedded in a metric space such that the graph is locally clustered.
Note that most of the classic small-world models are based on locally clustered graph families like
circulant graphs [32, 242] or d-dimensional lattices [11, 53, 125, 126], and that these are at the
same time locally clustered and regularly decomposable.

We will now show under which conditions general locally clustered graph families are also regularly
decomposable. The main idea behind the proof is to use the embedding of the vertices in a space
and to divide this space into areas that contain connected subgraphs with at least a given number
of vertices. Thus, the partition of space induces a partition of the graph. The task that has to be
tailored for every specific graph family is to show that there is always a partition of the space that
yields Θ(n/s(n))) connected subgraphs with at least the wanted number s(n) of vertices. Graph
families that are locally clustered and show this property are also regularly decomposable. Note
that this is not a necessary property of locally clustered graph families. It is possible to construct
artificial locally clustered graph families that lack this property, e.g., a graph family G5(n) which
consists of unconnected 5–cliques C1, C2, ..., C⌊n/5⌋ where all members of clique Ci are located
at position i in a 1–dimensional space. This family is clearly locally clustered for the partition
{C1, C2, . . . , C⌊n/5⌋}, but it is not regularly decomposable because it is not possible to partition
the graph into subgraphs with a size s(n) > 5.

In the following we will analyze the regular decomposability of a more sophisticated locally clustered
graph family, namely that of k–nearest neighborhood graphs (knn–graphs). This graph family is
an important geometric random graph family that is used mainly in the modeling of sensor and
multi-hop communication networks and is already well analyzed [197]. Given a set of vertices
distributed in any d–dimensional space, let E be the set of directed edges such that every vertex
v is connected to its k nearest neighbors. If the set of k nearest neighbors is ambiguous for any
vertex, then any of the possible sets is chosen uniformly at random. Note that the edge relation is
not symmetric and therefore the knn–graph is a directed graph where outgoing and ingoing edges
of a vertex have to be differentiated. We will now prove the following theorem:

Theorem 4.4
The k–nearest neighborhood graph family is regularly decomposable if the vertices of a given in-
stance are distributed uniformly at random in a 2–dimensional unit–square.

4. The Small–World Phenomenon 54

The proof proceeds by the following steps:

1. The upper bound on the expected distance to nearest neighbors is determined (4.3.5).

2. We show that a knn–graph is connected with high probability for k > log n (4.3.6).

3. Finally, we show that a generic partition procedure yields the required Θ(n/s(n)) subgraphs
for a given size function s(n) < n (4.3.7).

A Bound for the Maximum Distance of Nearest Neighbors

Let the knn–disk of any vertex v be defined as the minimal disk which contains all of its k nearest
neighbors. Note that the disk’s radius is equal to the maximum distance of any connected nearest
neighbor to v. The probability for any vertex v to be placed in some area of size A ≤ 1 within
the unit square is exactly A. Thus, the placement of vertices into a given area is a Bernoulli trial
with p = A and q = 1 − A. The radius of a disk with expectedly k = n · A vertices is then given

by r̄ =
√

k
π·n . Now, the Chernoff bound (3.7.2) can be applied to yield an upper bound for the

diameter of any disk within the unit square that contains at least k vertices:

Observation 4.1
Let r̂ =

√
ĉ · r̄ denote a knn–disk radius with ĉ = 3 +

√
8. Further let k ≥ log n. With high

probability, no disk with radius r̂ around any vertex v exists that does not contain at least k
vertices.

Proof 4.1
Let Dv denote a knn–disk around v with an expected number of vertices lying in that disk equal
to k̄ = c · k. Xk denotes the number of vertices lying inside of Dv. Now we apply a relaxed version
of the Chernoff inequality for independent Bernoulli trials. With µ = c · k and δ = 1− 1

c

Pr[Xk < (1− δ)µ] < e−
1
2 µδ2

= e−
ck
2 (1− 1

c)2 < n−
c
2 (1− 1

c)2 . (4.46)

The latter inequation is only valid for k > log n. For c = ĉ = 3 +
√

8 we yield

Pr[Xk < (1− δ)µ] <
1

n2
. (4.47)

Hence, the probability that there is a knn–disk with radius larger than r̂ =
√

3 +
√

8 · r̄ in a
knn–graph with k > log n is < 1/n.

The interpretation of this result is that it is almost impossible for n → ∞ that any knn–disk
exists with a radius larger than r̂. Therefore in our following theorems, we consider the radius of
knn–disks to be bound by r̂ =

√
ĉ · r̄.

Note that these equations are only valid for disks that do not intersect with border of the unit
square. If a vertex vc is positioned in a corner of the unit square, a factor of 2 has to be applied to
r̂ to yield the correct upper bound on the radius of its knn–disk. We will now sketch a sufficient
condition such that a knn–graph is connected with high probability.

4. The Small–World Phenomenon 55

minimal distance r
v,w with

v

w

r
r
r

Fig. 4.6: v and w are two vertices from different connected components of a knn–graph having minimal
Euclidian distance to each other. A circle is drawn around each of v and w, both having a radius that
equals the Euclidian distance between v and w. The figure shows that none of the k–nearest neighbors of
either v or w can exist in the intersection of these circles without contradicting the condition that v and
w are the pair of vertices from different connected components with minimal Euclidian distance.

4.3.6 Connectedness of knn–Graphs

It can be shown by a simple argument that a knn–graph with k > log n/ log(3/2) is connected
with high probability. As sketched in Fig. 4.6, every unconnected knn–graph contains one pair of
closest vertices lying in different components. It can be shown that there must be an angle of at
least 120◦ in which none of either v’s or w’s k nearest neighbors is placed. A simple stochastic
argument shows that the probability for the existence of any vertex with this property is given
by (2/3)k. Equating this with the probability bound of 1/n and solving the equation yields the
needed k such that w.h.p. not even one vertex with the above mentioned property exists. This
leads to the following lemma:

Lemma 4.4
A knn–graph is connected with high probability for k ≥ log n

log(3/2)

Note that the probability of an unconnected knn–graph is smaller than 1/n since the existence
of at least one vertex with the above given property is only necessary for an unconnected graph,
but certainly not sufficient. Nonetheless, this simple argument comes very close to a bound given
by Xue and Kumar in a much more involved analysis of which we learned later [252]. They have
shown that if k is larger than 5.1774 log n the graph is connected with probability approaching one
as n goes to ∞, while our simple analysis comes to the conclusion that it is 5.68 log n. However,
motivated by empirical results, Xue and Kumar conjecture that 1 is the critical value, i.e., that it
is enough if every vertex is connected to its log n next neighbors such that a tight upper bound is
still an open question for further research.

We will now show that connected commensurate partitions can be found.

4. The Small–World Phenomenon 56

Fig. 4.7: This figure shows the result of the partitioning procedure for s = 2 as described in 4.3.7.
Each square contains more than 4/π · s ≈ 2.5 vertices. Each circle within any quadratic region contains
at least s = 2 vertices that must form a connected subgraph. Note that the distribution of points is only
schematic.

4.3.7 Constructing the Partition

The following procedure constructs partitions as required by the definition of regularly decomposable
graph families. The needed size s of the subgraphs depends on the probability p = 1

f(n)·n of the

added random graph G(n, p):
s(n) = f(n) · log n1+ǫ (4.48)

The partitioning algorithm must be capable of finding for each pair of vertices a partition into
Θ(n/s) subgraphs such that both vertices are included in some full subgraph of size s. To guarantee
this we construct slightly different partitions for each pair v, w of vertices. For each of them a
geometric partition that is based on squares containing at least 4/π · s vertices is built. The exact
positions of the squares are chosen such that both vertices are contained in full subgraphs. Besides
this requirement the positions of the squares can be chosen arbitrarily as long as the number of
squares placed completely inside the unit square is maximal. Note that a constant relative fraction
of vertices may exist that is not contained in any subgraph. Each of the squares covers an area As

such that with high probability at least 4/π · s vertices are positioned in each of them. The area is
given by As >

4
π ·π · r̂2, where r̂ denotes the maximal expected knn–disk radius (Observation 4.1).

The maximal (centered) circle (Fig. 4.7) within each As contains only vertices from the same
connected component. Otherwise there is at least one vertex with an angle of 120◦ in which none
of its nearest neighbors is placed; this is highly unlikely as was already shown in Lemma 4.4. The
area of this circle covers π/4 of As. Therefore, at least π/4 · 4/π · s = s vertices can be found in
the connected component of each As. Fig. 4.7 shows an example of a partition for s = 2.

Note that the diameter D(Si) of the subgraphs is expectedly scaling with O(d
√
s) as is the case

with grid graphs.

With this we have shown that a locally clustered graph family is also regularly decomposable if it
is possible to divide the space in which it is located into Θ(n/s(n)) areas that contain connected
subgraphs of a required size s(n).

4. The Small–World Phenomenon 57

4.4 Summary

In this chapter we have tried to capture the essence of classic small–world network models that
were proposed over the last few years. The finding is that a network model qualifies as a small–
world network model if it shows the small–world phenomonenon: the decrease in the average
distance of a graph with a foremost large diameter after it is combined with only a sparse random
graph. We have shown here that all graph families that are regularly decomposable will show this
phenomenon, and that many of the network models are local and regularly decomposable at the
same time.

4.4.1 Network Design

After so many small–world network models have already been proposed, why were we interested
in offering another? Soon after Watts’ and Strogatz’ model was proposed, many other network
properties besides the clustering coefficient were shown to be important structural descriptors for
one or another real-world network, e.g., a scale-free degree distribution [8], a certain assortativity
[177], or the occurrence of certain subgraphs [168]. In this light, Kleinberg proposed a small–
world network model in which a greedy routing algorithm can find short paths [125, 126], and
Chung and Lu proposed a small–world network model that shows a scale-free degree distribution
[11, 53]14. Our perspective is that of a network designer, for example a designer of peer-to-peer or
other communication networks. It is reasonable that every setting needs special combinations of
the above mentioned structural properties, and the small–world effect is often one of the desired
features because it allows for efficient broadcasting owing to the small average distance. But of
course, since random edges are often long–distance edges, or, in the virtual social space of peer-
to-peer networks, would require people of very different interests to connect, the number of these
edges should be as small as possible. As long as the other desirable structural properties are mainly
local, e.g., a high clustering coefficient or a certain assortativity, these can be simply realized in
our model by choosing a regularly decomposable graph family that shows these properties as the
GL(n) part of the model. Theorem 4.3.4 then allows choosing the minimal number of long-distance
edges that are needed to assure a certain average distance in the graph.

4.4.2 Modeling Network Generating Processes

One of our main viewpoints on the evolution of real-world networks is that there is always a
system that contains a network–generating process that produces the network. For example,
the population living in a certain area sculpts its habitat by building and abandoning villages
and cities that are connected by a slowly changing system of streets and paths. It is intuitive
that such a network built of streets and paths will—on a large scale—always show the same
structural properties, for example, a typical length distribution of the streets between crossroads.
This is because the system, built by people with limited resources, will always be under similar
constraints and objective functions, e.g., that the system of roads should connect most villages
efficiently without becoming too expensive. As already sketched earlier, Gastner and Newman
have shown that commuter networks follow such an objective function [90]. From this viewpoint,

14 From these models, the approach of Andersen, Chung, and Lu and Chung and Lu is most similar to ours since
they also build hybrid graphs of a local and a global graph component [11, 53], although different proof techniques
are used to determine the diameter of the hybrid graph. Their global graph component is a power-law random
graph that induces a scale-free degree distribution and is already well analyzed [52]. Since their definition of
local graphs is different from our definition of regular decomposability, how close the two models are remains
an open question.

4. The Small–World Phenomenon 58

networks are small–world networks if in their network–generating process local edges are preferred,
as long as at least some random edges are allowed. This view is much more focused on the
network–generating process than the perspective of Watts’ and Strogatz’ model, and compared
with their model, ours fails to identify single networks as small–worlds if the process that built
them is unknown. This comes from the definition of the small–world phenomenon that is based
on the comparison of the behavior of three graph families for infinite n, i.e., on the analysis of the
expected result of the network generating process that constitutes them. We think that network
science needs to focus more on network generating processes. We think that one of the most
intriguing aspects of the small–world network model is the fact that a globally optimal—in the
sense of a small average distance—network structure arises even though most of the edges are
local. And this global optimality can be achieved without a central organizing process since the
only requirement is that every vertex should build some random edges. In our eyes this is an
important, but somewhat hidden aspect, of the small–world network model that was not focused
on much in the publications that referred to the article of Watts and Strogatz. We will extend this
idea of global optimality by local behavior and try to find out what kind of network structures can
be achieved in such a setting in chapter 6.

But before that, we will first speak a bit more about network generating processes. We have
used this term in this chapter to describe locality, saying that a local graph is one whose network
generating process more probably realizes edges with shorter distance than those with a greater
distance. We have discussed the fact that the clustering coefficient cannot be strongly correlated
with a local network generating process, and it seems that there is no single measure that can
determine whether a network is local. The reason is that even if a network were built by a network
generating process preferring local edges, the resulting adjacency matrix would be the result of
two different properties: the distance function between the vertices and the preference with which
these are realized. And for every locality measure proposed so far it is easy to imagine a certain
distribution of the vertices in a metric space such that the measure will be low. Since it is hard to
determine whether a network is local, we will instead try in the next chapter to bound the number
of edges built by a random network generating process. This technique has led to the discovery of
a new network structure that shows a peculiar behavior in real–world networks and is a promising
candidate for new efficient algorithms on real–world networks.

5. NETWORK–GENERATING SYSTEMS AND PROCESSES

In this chapter we will introduce the notion of network–generating systems, a notion that is sim-
ilar to the classical description of graph families (s. 3.4), but captures the more general process
that builds a network in real life. A network–generating system consists of the environment in
which a network is built, network–generating entities and, if the network–generating entities are
not generating a network between themselves, the objects that are connected by the entities. To
illustrate this difference: social networks are of the first type; here, humans are connecting them-
selves to other humans by getting to know them, working with them, having a sexual relationship
with them, giving birth to them, etc. In contrast to this, a word association network is built by
asking humans which words they associate with a given one. Thus, in the first case, the network
is built between the network–generating entities themselves, in the second the network–generating
entities are relating other objects with each other. We think that it is important to understand
which decision rules make network–generating entities relate themselves to others or relate objects
with each other, i.e., the network–generating process. Understanding this process is important for
computer scientists for two reasons:

1. In the design of technical networks, network–generating systems in which the network–
generating entities decide decentrally which relations to make become more and more
important as we will argue in 5.1.1. Nonetheless it is desired in many cases to steer this decen-
trally organized network–generating process towards a globally favourable network structure.
To do so, it is important to understand the network–generating process that governs the net-
work’s design in order to give incentives to the single entities to make the globally ’right’
decisions. This topic will be further explored in chapter 6 where we make some first analyses
of how to design efficient network–generating rules that are beneficial both locally for the
network–generating entity and globally for the whole system.

2. As already sketched in the introduction (2.3.3), some algorithms are contextual, especially
in network analysis problems, like centrality indices and clustering algorithms. A contextual
algorithm is designed to answer a question concerning the complex system by analyzing a
network deduced from this system, i.e., the question concerning a complex system is trans-
formed to a question on the complex network level, solved there, and the solutions are then
re-transformed to solutions on the complex system level. In the case of centrality indices, the
question is how to find the most important object in a complex system, in the case of clus-
tering, the question is how to find groups of objects in the system that are strongly related.
Both of these questions have led to dozens of different analytical algorithms that are applied
to the networks derived from a complex system [132, 133, 89]. But although every one of
these algorithms can be applied to every complex network, the answers they give cannot and
should not be re-transformed into an answer on the complex system level in all cases. This
problem will be discussed in 5.1.2.

We will start this chapter with a discussion of network–generating systems in 5.1, followed by a dis-
cussion of the importance of understanding network–generating processes in decentrally organized

5. Network–Generating Systems and Processes 60

network structures and a discussion of contextual algorithms. These two sections aim to show
why it is important to understand the network–generating process that is prevalent in a given
network–generating system. Often, this process is hidden, and all we have is the network itself,
and — if we are lucky — some data on its dynamic changes in time. Our contribution here is a
new technique with which the maximal percentage of random edges in a given graph can be bound.
This is important, for example, for the two types of contextual algorithms mentioned above: If
the percentage of random edges is high, centrality indices and clustering algorithms should only
be applied with great care. Our technique chooses any spanning tree T of the graph and counts
how many edges connect vertices that have a distance of k in the tree, the so-called tree distance
distribution. This technique is discussed in 5.21. We analyzed different real-world networks and
most of them have a very peculiar tree distance distribution that is much steeper than expected
in, e.g., a random graph, as shown in 5.3. In that section, we will also introduce the notion of
embeddable hierarchically local networks to enable a characterization of those real–world networks
that show a monotonically non-increasing tree distance distribution.

A natural question is whether there is an efficient algorithm to compute an optimal spanning tree.
But ‘optimality’ is difficult to define for a distribution, thus we introduce a simple quality measure
of a given spanning tree, namely the sum of the tree distances it induces in 5.4. We will also
give some simple lower and upper bounds for this quality measure, and then show that finding an
optimal spanning tree is NP-hard. We will then analyze in 5.5 whether a certain kind of simple
spanning tree, namely BFS trees, yield a constant factor approximation of the minimal Q(T)2.

It turned out that a steep tree distance distribution gives an upper bound to three interesting
theoretical problems, the so-called lower-stretch spanning tree problem [73], the minimal length
fundamental cycle/cut basis problem [61, 211], and the minimum length cycle basis problem [30, 109].
There are some problems whose runtimes depend on the sum of tree distances in a spanning tree,
and since many real-world networks show a steep tree distance distribution, these problems are
easier to solve on real-world networks than on general graphs. To our knowledge, there is so far
no result that uses small–world network properties for an efficient algorithm, and there is only
one paper that shows how to use a scale–free degree distribution for solving a classical theoretical
problem in computer science, the problem of finding a dominating set of a graph [56]. But this
newly found structure has already been proven to be important for the design of efficient algorithms
and we hope that further algorithms will be developed that use this structure. It is thus a valuable
categorization of real–world graph families in algorithm design, as we will discuss in 5.6.

Because finding the optimal backbone is NP-hard, but finding a good spanning tree is important
for many applications as sketched above, we will introduce a local optimization heuristic with
which a given spanning tree can be improved and some heuristics for promising starting spanning
trees for this algorithm in 5.7.

In section 5.8 we will then show how a spanning tree with a steep tree distance distribution can
be used to draw a large and complex network3. We conclude this chapter with a discussion in 5.9
of the findings.

5.1 Network–Generating Systems: Processes vs. Structural Properties

A graph is simply a mathematical representation of a set of objects and one of possibly many
relationships between these objects. In this simple setting, it is easy to define graph families as

1 This part of the work was partly conducted with Zoran Nikoloski and Michael Kaufmann.
2 This part of the work was conducted with Michael Kaufmann.
3 The layout algorithm and the local optimization process was developed together with Stephan Kottler [149].

5. Network–Generating Systems and Processes 61

a function of n, the number of vertices, and m, the number of edges, for example grid graphs,
random graphs, or hypercubes [102].

As discussed in the introduction, a network is more than simply a graph: its objects have properties
that go beyond the information about whether they are related to the other objects. Why should
any property of an object that cannot be directly represented by the graph be correlated with its
propensity to build edges? The need to add such properties to vertices was discussed in many
papers, for example to explain why and how a later arriving vertex in the preferential attachment
model could overtake all others and win the most edges [31]. This is a phenomenon that was
observed in the WWW where Google, soon after its release, was the first and best known search
engine despite the fact that Altavista and Yahoo had already been there for a long time. To
maintain the idea of the preferential attachment model, in which such a behavior would be most
unlikely, Bianconi et al. introduced the fitness of an object, which is related to the probability
with which it will have a relationship with other objects [31]. In this model, a new vertex could
simply have an overwhelming fitness that makes it attractive to connect to without the need that
it have a high degree to start with.

Another model that required vertices with an additional property is one that tries to model citation
networks. In this model, a time stamp is associated with each vertex, and the older this time stamp
is the more likely it is that the vertex is removed from the set of vertices that are allowed to acquire
new edges. Such a mechanism is thought to model the propensity of many articles to be known
and cited for a while but after some time to be forgotten and not cited again [129].

These two examples show that real–world networks most often cannot be accurately modeled by
simple graph families but rather by more complicated network–generating processes that take
additional properties of the objects to be related into account. Furthermore, in all networks there
is (or are) some entity (entities) that generate(s) the network, and that decide(s) who is related
to whom. It does not have to be a real decision from a real agent, but in any case there is some
process that creates the relation between the objects that are represented by the graph. In social
networks it is a human person that decides with whom to interact, in citation networks it is an
author that decides whom to cite, in protein-protein interaction it is (among others) the time and
place where a protein is expressed and its shape that makes it interact with others. And of course
the probability of a relationship is influenced by the environment in which the network–generating
entities are situated: if a child is taken by her mum to the neighbor it will be compelled to meet
the children of that neighbor; an author might be more acquainted with the work of his friends
and colleagues and may cite it more often than that of others; a protein’s interaction pattern may
be influenced by the hormones in the cell in which it is expressed, and so forth.

We will call a network centrally organized if there is one single network–generating entity that
coordinates the network’s building process. A typical centrally organized network is the network
of streets in a city, governed by the administration of that city. A network built by many network–
generating entities will be called a decentrally organized network. A typical example of such a
network is the network of flights around the globe since all the airlines decide independently (but
influenced by the decisions of others) what flights to offer. We will call a network self-organized
if the network–generating entities are generating relationships between themselves, as sketched in
Fig. 5.1.

In summary, a network–generating system consists of four components:

1. the environment;

2. a set of network–generating entities;

5. Network–Generating Systems and Processes 62

3. a set of objects that are related to each other by the network–generating entities. This set
may be a subset of the set of network–generating entities;

4. a network–generating process;

The network–generating process can be expressed by a mathematical function that describes the
probability that a network–generating entity builds a relationship either to others or between two
objects as a function of environmental incentives or pressures, its own properties and the properties
of others or the objects. If neither environmental properties nor properties of the entities or objects
influence the process, we have as a special case the description of a classical graph family. Thus, our
model of network–generating systems is a generalization of the more classical descriptions of graph
families that allows us to model more closely real–world networks and their building processes.

What we have today is mainly a categorization of real–world networks by their structural prop-
erties. Our aim is to change this paradigm into a categorization by the network–generating pro-
cesses that resulted in this network. In the following we will argue why an understanding of the
network–generating process within a network–generating system is important to the application
and development of algorithms on real–world networks. We start with a discussion of how knowing
the network–generating process in a network–generating system can help to steer complex network
evolution.

5.1.1 Steering Complex Network Evolution

In the last chapter we analyzed how to build networks showing the small–world phenomenon. We
have indicated that, by choosing the non-random graph part carefully, many different structural
properties such as a scale-free degree distribution [21], a certain assortativity [177], or local proper-
ties such as the (k, l)-property introduced by Chung et al. [53] (s. 4.2.3), can be designed into the
graph. These network models are helpful in traditional network design, where there is full control
over the design process of the whole network. One of the main perspectives of this thesis is that this
design paradigm is going to shift in many areas. Due to the globalization process, many networks
are not (any more) governed by a central authority, e.g., the network of flights governed by dozens
of different airlines, or peer-to-peer networks in which every user decides when to participate and
when to leave. Nonetheless, the structure of these networks has a global impact of the functionality
of the whole system: it has been shown that the network of flights makes our world a small–world
with important implications to the spreading of diseases [139, 191]. Similarly, the network struc-
ture of peer-to-peer networks influences the overall speed with which news can be transported over
the net. This implies that although the networks grow decentrally it might be advantageous to
steer the network–generating process by incentives such that the single network–generating entity
is guided into making the globally ’right’ decisions.

If, for example, it turns out that vertices with a high fitness are more likely to get a new edge and
furthermore that their fitness is increased by a new edge, this implies that the resulting network
will have a scale–free degree distribution. As is known from a famous paper by Albert et al. [6],
scale–free networks are much more prone to attacks than random graphs (s. 6.6.1), and might
thus not be a desired network structure for sensible communication networks. A simple example
is the international network of flights, where some airports are major hubs, connecting continents
with each other, whereas most airports are serving only domestic flights. Here the only choice
for reacting to the problematic network structure that could be severly disrupted by just a few
attacks is to enhance security on the hubs. In other cases it might be possible to change incentives
or pressures to steer the network–generating entities. In peer-to-peer networks there is a similar

5. Network–Generating Systems and Processes 63

Network Generating Systems

Environment

Network
generating

Entity

Environment

Environment

Network
generating
Entities

Objects

Objects

Network
generating

Entity

Centrally
Organized
Network

Decentrally
Organized
Network

Decentrally
Self-

Organized
Network

Fig. 5.1: We differentiate three main types of network–generating systems: centrally organized net-
works where only one entity decides who is connected to whom, and decentrally organized networks
in which many entities decide independently whom they relate to. If the network connects the entities
themselves, we speak of decentrally self–organized networks.

5. Network–Generating Systems and Processes 64

problem, namely that of free–riding, i.e., where a user will only download files but never help to
distribute them. Here, some protocols try to punish free–riders and push them to the outskirts of
the net and maybe even isolate them, making it hard to get any more files out of the system unless
they cooperate, e.g., [47].

Our claim here is that the whole network–generating system must be known to come up with the
right incentives or pressures to steer the network–generating process into the desired direction, as
is the case with all trials to steer a complex system [17, 67, 233]. We will discuss this point more
closely for the case of decentrally self-organized networks in chapter 6.

Another point for why understanding the whole network–generating system and its network–
generating process is important, is that complex network analysis is often context–sensitive, as
we will discuss in the following.

5.1.2 Contextual Algorithms

For a book project [41] we spent some time reviewing the literature on centrality indices. Centrality
indices were introduced to find out who is the most important actor in a given complex network
[237]:

One of the primary uses of graph theory in social network analysis is the identifi-
cation of the ”most important” actors in a social network. ... a variety of measures
designed to highlight the differences between important and non-important actors have
been offered by many writers. All such measures attempt to describe and measure
properties of ”actor location” in a social network. [237]

One question whose answer has been attempted in this ways is: Who is the most important
Florentine family in medieval Florence, as indicated by the information regarding which family
was connected by marriage with which other family [237]? The question can be answered by
looking at the vertex with the highest degree, which is, not surprisingly, the Medici family. This
measure is called the degree centrality. One can also argue that if marital ties are used to gather and
spread information, the importance of a vertex is inversely proportional to its maximal distance
to other families in the network. This is computed by the so-called eccentricity that will also play
a role in chapter 6. Both centrality indices can be applied to the graph of marital ties, but they
give different answers to the same question. Thus, which one is ‘right’? As we have argued in
[133], influenced by a paper by Borgatti [37], centrality indices can only be reasonably applied if the
process that made them and the process that uses them is known: if the network displays something
like a voting process, certainly the agent with most votes (i.e., edges) is the most important player.
If the network displays a hierarchy it might actually be the one with the least number of edges
because she is at the top of a pyramid.

Thus, the context, i.e., how the complex network represents the complex system that is analyzed,
is an important part of the input for deciding which algorithm to apply to solve it. Knuth defines
an algorithm as a deterministic problem–solving process with five properties: it has input and
output, which stand in a defined relationship, it is finite, and it is efficient [130]. The problem
with centrality indices is now that every one of them is defined on undirected, connected graphs,
no matter what the significance of the edges for the complex system at hand, but not every one
can reasonably be applied to solve the question on the complex system level. Thus, we want to
introduce a sixth property of — mainly analytical — algorithms, that is, the context in which it
can reasonably be applied to a complex network. An algorithm that should only be applied in a
given context is then defined as a contextual algorithm.

5. Network–Generating Systems and Processes 65

A second set of contextual algorithms are the so-called clustering algorithms. A clustering algorithm
computes subsets of vertices that form densely connected subgraphs in a given graph. There are
different clustering quality measures for any given partition of a graph (s. [89] for an overview),
and dozens of algorithms to compute clusterings, e.g., [180, 93, 188, 204, 201]. All of these methods
claim that the subgraphs computed by their method will reveal functional modules in the given
graphs. And indeed, from metabolic networks [201], to different kinds of social networks [180, 93],
or protein networks [188], the computed subsets could be shown to contain vertices that represent
somewhat similar objects, e.g., metabolites of a certain metabolic path, scientists of the same
community, or proteins with the same function in the cell, e.g., support of the transcription and
subsequent translation of DNA to proteins. These are astonishing examples, and it is reasonable
that when a new protein is found in an organism, and a clustering algorithm is run, the group into
which it falls may predict its function in the cell.

There is also a range of different network models that are built on the assumption that an edge is
built mainly between similar or somewhat near objects. Because these models are widely accepted,
they also indicate that locality is a main network–generating process and thus that clustering
algorithms may be applied to them. We will briefly review some of these models and findings:

1. Since sensors are limited in their transmitting radius, sensor networks are often modeled by
unit-disk graphs, where each vertex is connected to all vertices within the transmission radius
that is common to all, or knn-graphs as indicated in the last chapter [49, 197, 75, 74]. These
are very strong local network models because there is a threshold distance such that any edge
with a greater distance does not exist.

2. Other models assign vanishing probabilities to long-range edges, e.g., with an exponentially
decaying probability P (e) e−d(e)/d0 for some constant d0 in the Waxman model that is in-
tensively used for network generators that were proposed to simulate the Internet’s network
topology [243].

3. Kleinberg analyzes a model in which vertices are embedded in a hierarchy and the probability
that they are connected by an edge increases as their distance in that hierarchy decreases
[127].

4. As Yook, Jeong, and Barabási showed, it is more likely that the Internet’s preference for
local edges is less pronounced and more likely to decrease linearly with d [254]. The model
proposed by these authors to capture the essential structure of the Internet is then a mixture
of the preferential attachment model and a locality preferring model.

5. A similar, more generalized model was also analyzed by Barthélemy who comes to the conclu-
sion that when edge formation is costly, most network structures, e.g., diameter, clustering
coefficient, assortativity, are then dependent on the vertex density [26].

But in fact all of the clustering methods will also find a clustering in a random graph, where none
of the subsets found will show any common functionality. We do not want to argue that clustering
techniques should not be applied to real–world networks, but we do argue that this will only make
sense if:

1. there is something such as a distance or similarity measure between the objects;

2. an edge is the more likely between two objects the more similar they are.

5. Network–Generating Systems and Processes 66

(a)

Fig. 5.2: This is a local graph that is perfectly local in the sense that for the given embedding of
the vertices only short edges are built. Still, the graph does not show a high locality in the sense of the
(k, l)-measure introduced by Chung and Lu [53, 12]. A graph is said to be (k, l)-local if for every edge
there are at least k vertex–independent paths of at most length l that connect their endvertices. In this
case, due to the red edge, there is no (k, 4) locality for any k because the smallest alternative to this edge
is the path with length 5. For the same edge, there is also only one path with length five, thus prohibiting
(k, 5)-locality for all values k > 1.

The question is now whether given only the adjacency matrix of a network, can we measure
whether edges are drawn at random or are biased, i.e., that ’short’ edges are preferred in a way?
As we discussed in the last chapter, it seems difficult to measure locality as defined by Definition
4.2. We have already shown that the clustering coefficient can fail to indicate locality for —
admittedly artifical — distributions of vertices such that there is no strong correlation between a
network–generating process that prefers to build small edges and a high clustering coefficient. Also
the measure introduced by Chung and Lu, the (k, l)–locality can be tricked by certain distributions
of vertices: If the edge density varies strongly such that big holes emerge without any vertex, there
can be pairs of connected vertices that do not have any alternative path smaller than l, as shown
in Fig. 5.2. The problem seems to be that to discover locality means to measure two things at the
same time: the distribution of vertices in space that determines their distance to each other and
the propensity to build local edges with respect to this embedding. This seems to be as difficult
as to see the real identity of objects in the shadowy interior of Plato’s cave.

Since detecting locality seems to be too difficult, we asked ourselves whether it is possible to detect
the opposite, namely a random selection of edges that is mixed with some other network–generating
process. This idea is discussed in the following section.

5.2 Bounding the Number of Random Edges in a Graph

The setting is as follows. Let S denote any network–generating system. Let PSW denote some
small–world generating process as described in the last chapter, i.e., one that is composed of two
different processes, where Prand denotes the generation of random edges, each with probability
p. Given only the adjacency matrix of the resulting network, are we able to measure p? If so,

5. Network–Generating Systems and Processes 67

(a) (b)

4

2
2 2

2

2

2 2

2
2

2

2

3
3

3

3 3

2

2
4

5

5 6

4 4

7
8

(c)

Fig. 5.3: (a) Highlighted by red edges is a subgraph of G. (b) Highlighted by red edges is a spanning
tree of G. (c) For the given spanning tree in (b) the distances it defines for the non-tree edges are given.

this is a first step in comparing two given graphs with respect to their locality (or at least bias
towards certain edge classes). For example, if two graphs have about the same number of vertices
and edges, but one contains a random graph component with p = 0.1 and the other contains one
with p = 0.2 the latter can be said to be ’more’ random and thus less local than the other. In the
following we will show that it is possible to measure the parameter p of a random edge generating
process by introducing a new analytical method, the so-called backbone distance distribution.

Let G(n, p) be a connected instance from the G(n, p) family. Let G′ = (V,E′ ⊆ E) be any spanning
subgraph of this graph, i.e., the edge set E′ constitutes a connected component on V , as depicted
by the red edges in Fig. 5.3.

Suppose that we only know the edge set E′ but not the full set of edges E and the parameter p of
the random graph. We will now determine the probability with which any pair of vertices that is
not in E′ is in E. Henceforth, a pair of vertices of which we have no knowledge about whether it
is connected in G or not, will be called a possible edge. The first observation is that in a random
graph every possible edge has the same probability of existing; there is no bias towards any of
them even if E′ is a randomly chosen subset of E. Of course, the new probability p′ with which
one of those edges exists is diminished for all p < 1:

p′ =
n(n− 1)p/2− |E′|
n(n− 1)/2− |E′| . (5.1)

Let now the distance of any two vertices v, w in the subgraph G′ be denoted by dG′(v, w). To
any possible edge e = (v, w) we will assign the distance of its endvertices in the subgraph, i.e.,

5. Network–Generating Systems and Processes 68

dG′(e) = dG′(v, w). If G′ is uniquely identified by the context, we will discard the index. Starting
at distance k = 2, the distribution of the number of possible edges with this distance can now
be computed. This distribution is called the possible distance distribution. Since every one of
these possible edges e has the same probability p′ of being realized, the number of realized edges
with this distance will be proportional to the number of possible edges in this distance. The
corresponding distribution is called the realized or absolute distance distribution. Dividing the
number of realized edges in this distance by the number of possible edges in this distance will thus
rediscover probability p′. The corresponding distance distribution is called the relative distance
distribution for the given subgraph.

To come as close as possible to the ’real’ probability p with which the random graph was built, it
is of course helpful to reduce the set of edges in E′ as far as possible, i.e., by building a spanning
tree (3.5); see Fig. 5.3(b). Then, Equ. 5.1 reduces to expectedly

p′ =
np− 2

n− 2
. (5.2)

If the chosen subgraph is a spanning tree we will in general speak of (possible/realized/relative)
tree distance distributions. As stated above it is necessary that the spanning tree not be biased in
any way. There are several methods to compute spanning trees uniformly at random [200, 248],
e.g., by a Markovian process [45]. Here we use a variant of a method that was designed to build
minimal spanning trees, called the Kruskal algorithm [57]. To construct a minimal spanning tree
by this method, edges are sorted non-increasingly by their weight, and recursively added to the
growing tree if they do not induce a cycle. If the edge set is instead shuffled, the method is called
randomized Kruskal and will of course not generate a minimal but just an ordinary spanning tree.
Although this method will not generate each spanning tree with the same probability but prefers
path–like spanning trees [200] this is not a problem since we just need a spanning tree that will not
bias edges within a certain distance. Furthermore, spanning trees with a high diameter yield many
tree distance classes which helps to fit a function to the resulting tree distance distribution. Fig.
5.4 shows relative tree distance distributions of some spanning trees in random graphs from the
G(n, p) model with different values of the parameter p, ranging from 0.1 to 0.8. The lines indicate
p′ and it is clear to see that the relative tree distance distribution is very well described by these
values.

So far we have shown that the (unknown) parameter of a pure random graph can be computed
by this method. In the next section we will show how this method can be used to bound the
number of random edges in a hybrid graph model, i.e., one that is composed of a non-random
graph component and a random graph component.

5.2.1 Bounding the Number of Random Edges in a Hybrid Graph Model

To show that this method can also help to detect a random graph component superimposed
on a different network, we will use a simple hybrid graph model that is based on a grid and a
superimposed random graph from the G(n, p) family. In the experiments, we constructed grids
with 20× 20 vertices, resulting in 760 edges to which a random graph from the G(n, p) model was
added. Fig. 5.5 shows the resulting relative tree distance distributions for the pure grid with p = 0
and p = 0.001, 0.005, 0.01, 0.05, i.e., expectedly 80, 400, 800, and 4000 added random edges. The
relative tree distance distribution of the grid alone is quite steep as can be seen in Fig. 5.5(a),
but note that of course no cycles of odd length can emerge. We have thus skipped the even tree
distances for this data set to make the fitting meaningful. How then can a random graph on
top of this grid be detected by the method? The idea is that the grid alone produces a steeply

5. Network–Generating Systems and Processes 69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

pr
ob

ab
ili

ty
 o

f r
ea

liz
at

io
n

tree distance

p=0.1
p=0.2
p=0.3
p=0.4
p=0.5
p=0.6
p=0.7
p=0.8

Fig. 5.4: Every data set shows the relative tree distance distribution (rtdd) of one random graph with
400 vertices and p as denoted. The lines denote p′ as given in Equ. 5.1. The correspondence between the
rtdd and p′ is very clear, as expected.

declining relative tree distance distribution, while the random graph component adds a constant
distribution with value p. This is of course a bit naive since the added random edges will also
change the structure of the spanning tree: if a random edge is incorporated into the spanning tree,
it is clear that some of the local edges will now have a large tree distance. We thus expect that
the offset by which the relative tree distance distribution is elevated is actually larger than p. In
any case, the offset will give an upper bound on p.

One method to compute the offset is to fit a function f(x) = g(x)+b, b ∈ R, to the distribution and
take the value of b as the offset induced by a random graph component. However, sometimes the
standard error of this offset will be in the scale of b itself, and then this method is questionable.
We will thus give another, more strict method to compute b. To do so, we need some further
definitions: We will call the quotient of edges in a given tree distance k and the possible number
of edges in that tree distance the realization factor ρk of that tree distance. The realization factor
in tree distance k is thus nothing else than the parameter p of a random graph that has realized
exactly the expected number of edges in this tree distance. Of course, since these graphs are
finite, there will always be large tree distances in which nearly no edge is realized but in which the
possible number of edges to be realized is also very small. Thus, the realization factor computed
in these large tree distances has a large standard deviation compared to the mean and may not be
taken as an upper bound on p, implying that it is not reasonable to take the minimum of all these
realization factors as an upper bound on p.

Rather, we have to take into account the probability that the real realization factor ρ∗, i.e., the real
parameter p of the random graph component, is much higher than ρk but has nonetheless realized
only #r(k) of the #p(k) possible edges. The random variable X of edges realized in a given tree
distance with a realization factor of ρ∗ is just the outcome of the simple Bernoulli experiment
in which each of the possible edges #p(k) is realized with probability ρ∗. We will now see each
tree distance as the outcome of a single Bernoulli experiment with an unknown realization factor
ρ∗k := f · ρk for some constant f > 1. The question we want to answer is then: What is the
highest ρ∗k > ρk such that the probability that the deviation of |X − ρ∗k · #p(k)| is greater than

5. Network–Generating Systems and Processes 70

f · ρk · #p(k) − #r(k) = (f − 1)#r(k) is less than, e.g., 1%? With this question we bound the
real realization factor such that it is very unlikely that ρ∗k is even higher but only produced #r(k)
edges. And subsequently, the minimal ρ∗k can then be used as an upper bound on ρ∗.

Let #p(k) denote the number of possible edges and #r(k) the number of realized edges in tree
distance k for a given spanning tree and let ρk denote the realization factor of this tree distance, i.e.,
ρk = #r(k)/#p(k). We will now bound the probability that ρk is actually f times as high for some
f > 1 such that f · ρk ≤ 1, when only #r(k) edges were realized. The expected value of realized
edges if the realization factor is f ·ρk is of course f ·ρk ·#p(k) = f ·#r(k) and its standard deviation
σ is given by f ·ρk(1−f ·ρk)#p(k) = f(1−f ·ρk)#r(k). By Chebyshev’s inequality, the probability
that the number X of realized edges deviates by more than t = f#r(k) −#r(k) = (f − 1)#r(k)
from the expected value µ = f#r(k) is given by:

P [|X − µ| ≥ t] ≤ σ2/t2 (5.3)

=
f(1− f · ρk)#r(k)

(f − 1)2#r(k)2
(5.4)

=
f(1− f · ρk)

(f − 1)2#r(k)
. (5.5)

We equate this with 0.01 and compute the minimal f for each tree distance such that the probability
that for f ·ρk only #r(k) edges are realized is at most 1%. From all f ·ρk values we take the lowest
value as an upper bound on ρ∗, the real parameter p of the random graph component. f is the
solution of a quadratic equation as follows:

f(1− f · ρk)

(f − 1)2#r(k)
= 0.01 (5.6)

⇒ (f − 1)2
#r(k)

100
− f(1− f · ρk) = 0 (5.7)

⇒ f2

(

1 +
100ρk

#r(k)

)

− f
(

2 +
100

#r(k)

)

+ 1 = 0 (5.8)

⇒ f1,2 =
2 + 100

#r(k)

2
(

1 + 100ρk

#r(k)

) ±

√
√
√
√
√

2 + 100

#r(k)

2
(

1 + 100ρk

#r(k)

)

2

− 1

1 + 100ρk

#r(k)

(5.9)

We will first analyze both methods to compute an upper bound on p on simple model introduced
above of a grid graph plus superimposed random graph (Fig. 5.5).

To each of the relative tree distance distributions we fitted a function of the form f(x) = a/xb + c.
The fit is given as an inset in each of the diagrams, where each parameter a, b, c is accompanied
by its standard error. In the case of the pure grid (Fig. 5.5(a)), the offset is 0.01, bounding the
number of random edges in this graph to 80, i.e., around 10% of all edges. Of course, this is an
overestimation since we know that there are no random edges in this graph. Also for the superim-
posed random graphs with p = 0.001, 0.005, 0.01, the offset overestimates p with 0.0044, 0.0085, and
0.014, bounding the number of random edges to around 350 instead of 80, 680 instead of 400, and
1120 instead of 800. For the densest random graph with p = 0.05 that results in more edges than
the underlying grid, the offset bounds the number quite correctly to around 4320 edges instead of
4000. In summary, the offset of a fitted function will overestimate the number of random edges,
but the higher the random graph part is, the better the approximation. Note also that b grows
with the number of added random edges: where the fitted function was approximately inversely
proportional to the square of k in the pure grid, it is 3.16 for p = 0.001 and 4.31 for p = 0.005. For

5. Network–Generating Systems and Processes 71

p = 0.01 and p = 0.05 the values are 6.72 and 2.31, but in both cases a has also strongly changed,
i.e., it looks as if both of these distributions were best fitted by a constant, but have to allow for
the first values that deviate strongly from this constant.

In these cases the standard deviation of parameter c was very low compared to c, and thus it
can be seen as quite reliable. Nonetheless, we also want to compare the values with that of the
minimal ρ∗k. In the case of the pure random graph, the minimal ρ∗k value is 0.058, bounding the
number of random edges to 4640, i.e., more than the grid graph has. Also in the second graph (Fig.
5.5(b)), the lowest ρ∗k value is 0.040, overestimating the correct parameter by a factor of 40. For
the third graph (Fig. 5.5(c)), the lowest ρ∗k value is 0.044, overestimating the correct parameter
by a factor of 8.8. For the fourth graph with a real parameter of p = 0.01, the lowest ρ∗k value
is 0.052, overestimating it by a factor of 5.2, and for the fourth graph with a real parameter of
p = 0.05, the lowest ρ∗k value is 0.10, overestimating it by a factor of 2. The ρ∗k value overestimates
by far the number of random edges in all of these cases, although as with the offset given by the
fit, the relation between the correct value and the estimation becomes better for large p. In this
case, the reason for the failing of the ρ∗k method is just that the underlying graph is very small with
only 760 edges. In every tree distance greater than 17, only 10 edges or less were realized, making
the estimation of ρ∗k difficult, and of course, in the lower distances the edges of the underlying
grid are prevalent and thus their ρ∗k value does not say much about the random graph component.
In an underlying grid with 4, 900 edges the lowest ρ∗k value already drops to 0.0049. If such a
graph is superimposed by a random graph with p = 0.001, the lowest ρ∗k value drops to 0.0044,
overestimating p by only a factor of 4.4. This is mainly due to the much larger number of possible
edges in a large tree distance. If this is large, but only very few of them are realized, Chebyshev’s
inequation is good enough to bound ρ∗k reasonably. Thus, for an underlying grid of 19, 800 edges,
the lowest ρ∗k finally drops to 6.69 · 10−4.

In summary, the parameters of the fitted function can be used as an upper bound if the fit is
reasonably close to the distribution as indicated by the standard error. ρ∗k overestimates the real
parameter by more than a reasonable fit, but will in each case yield a valid upper bound on the
number of random edges. Although future research is needed to improve the second method, we
will now show that in most cases both methods yield reasonable bounds of the number of random
edges in real–world networks.

5.3 The Relative and Absolute Tree Distance Distribution of Real–World

Networks

In the following we have analyzed the relative tree distance distribution of various real–world
networks by computing 50 randomized Kruskal spanning trees and averaging their tree distance
distributions. Figs. 5.6, 5.7 and 5.8 show the relative tree distance distributions of these networks4

and some fitting function for the data. As can be seen at a first glance, some of the distributions
look quite different to the simple ones above, and thus the fitting could not be made with the same
function for all graphs.

Fig. 5.6(a) shows the word–association graph that was provided by Palla et al. in their software
package CFinder [62, 188] (s. 8.1.4). To construct this network, people were given a word and
asked for a spontaneous association they had with the given word. The network represents words
by vertices and connects them with a directed edge if the word associated with the first vertex was
associated with the word represented by the second vertex. The edge is weighted by the number

4 The details concerning this data can be found in 8.1.

5. Network–Generating Systems and Processes 72

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 20 40 60 80 100 120

re
al

iz
at

io
n

 f
ac

to
r

tree distance k

f(x) =(1.88 +/- 0.05) / x^(2.11+/- 0.02)+(0.0010+/-0.0003)

Grid 20x20
f(x)

(a) pure grid

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80

re
al

iz
at

io
n

 f
ac

to
r

tree distance k

f(x) =(3.80 +/- 0.30) / x^(3.16+/- 0.07)+(0.0044+/-0.0001)

Grid 20x20 + p=0.001
f(x)

(b) + G(n,p) with p=0.001

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x) =(5.35 +/- 1.33) / x^(4.31+/-0.23) +(0.0085+/-0.0001)

Grid 20x20 + p=0.005
f(x)

(c) + G(n,p) with p=0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0 10 20 30 40 50 60 70 80

re
al

iz
at

io
n

 f
ac

to
r

tree distance k

f(x) =(32.30 +/- 48.46) / x^(6.72+/-1.37) +(0.0143+/-0.0001)

Grid 20x20 + p=0.01
f(x)

(d) + G(n,p) with p=0.01

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x) =(0.02 +/- 0.07) / x^(2.93+/-5.89) +(0.0543+/-0.0003)

Grid 20x20 + p=0.05
f(x)

(e) + G(n,p) with p=0.05

Fig. 5.5: Relative tree distance distributions of graphs composed of a grid with 20 × 20 vertices and
a random graph with different values of p as indicated. The higher the number of random edges in the
combined graph, the higher the offset from the x-axis, giving an upper bound to the amount of random
edges in an unknown graph.

5. Network–Generating Systems and Processes 73

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 10 20 30 40 50 60 70 80

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x)=(0.4325+/-0.0033/x^3+(0.0007+/-0.0000)

Word Association
f(x)

(a) word–association graph

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 20 40 60 80 100 120

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x)= (2.055760+/- 0.012766)/x^5 +(0.000084+/- 0.000038)

1995-1999
f(x)

(b) co–authorship network

Fig. 5.6: Relative tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

of these associations. However, here we use the unweighted, undirected version of the network. As
can be easily seen, the relative tree distance distribution is far from random and could be very well
fitted by a function that is inversely proportional to k3, with an offset of 7.3 · 10−3 ± 4.2 · 10−4.
Since the standard error is around 6% of that value, this seems to be acceptable as an upper bound
to the random graph component, yielding expectedly 18947 random edges, i.e., 60% of all edges.
The lowest ρ∗k value is 0.00125, as expected higher than the value obtained by the fit, bounding
the number of random edges to 32445, i.e., more than all the edges that are actually in the graph.

Fig. 5.6(b) displays a co–authorship network, as compiled by Newman and kindly offered for
further analysis on his website [176, 179] (s. 8.1.3). Newman analyzed all publications published
online at the arXiv [251] in the section condensed matter, in the interval from 1995−1999. Vertices
represent authors and two vertices are connected by an edge if there is at least one publication
in that interval published by them as co–authors. The network shows an extremely steep relative

5. Network–Generating Systems and Processes 74

tree distance distribution that is fitted very well by a function that is inversely proportional to k5.
The offset is given by 8.4 · 10−5, bounding the percentage of random edges to 33% of all edges.
Again, the lowest value of ρ∗k is given by 3.31 · 10−4 and thus higher than the one given by the
offset, bounding the number of random edges to 31797 edges, to at most 70% of all edges in the
graph.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 20 40 60 80 100 120 140 160 180 200

re
al

iz
at

io
n

fa
ct

or

tree distance k

g(x) = (5.192+/- 0.146)/x^4 + (0.002+/- 0.001)

h(x) = (5.534+/- 0.108)/x^4 + (0.001+/- 0.001)

i(x) = (4.893+/- 0.120)/x^4 + (0.001+/- 0.001)

Harry Potter
g(x)

Bible
h(x)

Jane Austen
i(x)

(a) co–purchasing network of books

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 10 20 30 40 50 60

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x) =(0.032 +/- 0.002)/x^2 + (0.0001 +/- 0.0000)
g(x) =(0.016 +/- 0.002)/x^2 + (0.0001 +/- 0.0000)
h(x) =(0.011 +/- 0.005)/x^2 + (0.0002 +/- 0.0000)
i(x) =(0.015 +/- 0.001)/x^2 + (0.0001 +/- 0.0000)
j(x) =(0.012 +/- 0.001)/x^2 + (0.0001 +/- 0.0000)
k(x) =(0.011 +/- 0.001)/x^2 + (0.0001 +/- 0.0000)
l(x) =(0.009 +/- 0.001)/x^2 + (0.0001 +/- 0.0000)

(b) autonomous system network

Fig. 5.7: Relative tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

Fig. 5.7(a) shows different co–purchasing networks obtained from the online shop amazon.com [1]
(s. 8.1.1). We started a crawl at different books and followed the links under the title ’customers
who bought this book also bought’ until a given depth, in this case 9. The data titled ’Harry
Potter’ started at ’The Order of the Phoenix’, the data titled ’Luther’ started at some edition of
the Lutheran Bible, the data titled ’Jane Austen’ started at some edition of ’Pride and Prejudice’.
Here, the fitting function had the form a/k4 + b, with low offset values for all three data sets.
According to these values, up to 63%, 55%, and 99%, respectively, of all edges are random in the

5. Network–Generating Systems and Processes 75

three data sets. All of these values are problematic since the standard error of the offset is in all
cases around 50% of the value itself. In this case, the more rigid method will obtain better bounds
because the fit cannot find the offset with a high certainty: for the first data set, the smallest
ρ∗k value is 0.00183, bounding the number of random edges to 4253, i.e., approximately 70% of
all edges. For the second data set, the smallest ρ∗k value is 5.15 ∗ 10−4, bounding the number of
random edges to 7458 edges, i.e., to 35% of all edges. For the third data set, the smallest ρ∗k value
is 5.3 · 10−4, bounding the number of random edges to 7851, i.e., 48% of all edges. Note, however,
that the values obtained by the second method are within the bounds defined by the standard
error.

Fig. 5.7(b) shows different snapshots of the autonomous system network of the Internet, taken
every six months in the interval from January, 1998 to January, 2001. The fits to the data sets
are chronologically sorted, i.e., the first fit describes the first data set from January, 1998. An
autonomous system is a group of routers with the same IP-address. Routing is mainly done on
this level, and their physical links provide the backbone of the Internet. The exact details of how
they are anaylzed and constructed can be found in 8.1.2. The data is fitted best by inversely
quadratic functions, as shown in the diagrams, but only if the range of tree distance 2 − 4 is
disregarded. The reason for this is best seen in the earliest data set: tree distance 2, i.e., triangles,
are much less realized than expected, then there is a peak at tree distance 3, and again a drop
in tree distance 4. Note that tree distance 3 signifies that there is a four-cycle of which three
edges are in the tree. Our intuition is that in the early days of the Internet routers were more or
less connected grid like and people tried to avoid connecting to other routers that were too near,
i.e., they tried to connect autonomous systems such that the overall network had a low average
distance. We think that in time different network–generating processes were at work, where the first
network–generating process was more centrally organized (avoiding connections between routers
already well connected), whereas later connections were more decentrally organized. In any case,
these fits have low standard errors and thus we will consider them as an upper bound on p. For
each of the data sets, the following bounds on the number of random edges can be obtained:

1. March 1998: The offset is 1.15 · 10−4, bounding the percentage of random edges to merely
9%. The lowest ρ∗k value is given by 8.22 · 10−4, thereby bounding the number of random
edges to expectedly 5130, i.e., to 64% of all edges.

2. September 1998: The offset is 1.36 · 10−4, bounding the percentage of random edges to
15%. The lowest ρ∗k value is given by 5.41 · 10−4, thereby bounding the number of random
edges to expectedly 4751, i.e., to 60% of all edges.

3. March 1999: The offset is 1.86 · 10−4, bounding the percentage of random edges to 23%.
The lowest ρ∗k value is given by 4.66 · 10−4, thereby bounding the number of random edges
to expectedly 5379, i.e., to 58% of all edges.

4. September 1999: The offset is 6.5 · 10−5, bounding the number of random edges to 10%.
The lowest ρ∗k value is given by 4.05 · 10−4, thereby bounding the number of random edges
to expectedly 6706, i.e., to 59% of all edges.

5. March 2000: The offset is 1.06 · 10−4, bounding the percentage of random edges to 18%.
The lowest ρ∗k value is given by 3.55 · 10−4, thereby bounding the number of random edges
to expectedly 8922, i.e., to 60% of all edges.

6. September 2000: The offset is 7.8 ·10−5 bounding the percentage of random edges to 16%.
The lowest ρ∗k value is given by 2.66 · 10−4, thereby bounding the number of random edges
to expectedly 10022, i.e., to 55% of all edges.

5. Network–Generating Systems and Processes 76

7. March 2001: The offset is 8.8 · 10−5 bounding the percentage of random edges to 22%.
The lowest ρ∗k value is given by 0.00021, thereby bounding the number of random edges to
expectedly 11733, i.e., to 53% of all edges.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0 5 10 15 20 25 30 35 40 45 50

re
al

iz
at

io
n

fa
ct

or

tree distance k

f(x)= (-0.000014+/- 0.000001)x+ (0.001554 +/- 0.000018)

Text Analysis
f(x)

(a) word adjacency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

f(x)=(0.3169+/-0.0074/x^2.5+(0.0007+/-0.0002)

PPI
f(x)

(b) protein–protein interaction graph

Fig. 5.8: Relative tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

Fig. 5.8(b) shows a protein–protein interaction network of the organism Saccharomyces cerevisiae;
this network is the same as that used by Palla et al. and can be obtained together with the
authors’ software CFinder to find k-cliques [62, 188] (s. 8.1.4). Its relative tree distance is fitted
by a function that is inversely proportional to the cube of the tree distance. The offset of this
function is 6.56 · 10−4, thus bounding the percentage of random edges to 31%. Since the standard
error of the offset is quite high, it is questionable how tight this upper bound is. The lowest value
of ρ∗k is 2.21 · 10−3, bounding the number of random edges to 6605 edges which is actually 380
more edges than the graph has. Thus, for this graph our method cannot rule out the possibility
that the graph is totally random.

5. Network–Generating Systems and Processes 77

Fig. 5.8(a) shows a special kind of text analysis network, a so–called word adjacency network
obtained from Uri Alon’s website and used in the article of Milo et al. [168]. Here, the whole
text of the book ’The Origin of Species’ by Charles Darwin was parsed and a list of all words was
computed. The network represents these words, and two of these vertices are connected by an
edge whenever the corresponding words occur next to each other at least once in the whole text.
Also here, we use the unweighted version of the network. The relative tree distance distribution
seems to be quite different from the others since it is best fitted by a linear function, at least in the
interval between tree distances 10 and 40, but on the other hand, the network is really small and it
is hard to tell which function is best. Also here, the smallest fρk value is bounded by 1.63 · 10−3,
bounding the expected number of random edges to 44352 which is 150 edges more than the graph
has.

In summary, not surprisingly, none of the real–world networks turned out to be a random graph,
although the protein–protein interaction network and the word adjacency network come quite
close. However, our method allows for different degrees of random graph contributions to the
whole architecture. If a fit can be made with an offset that has a low standard error, this offset
may be used as an upper bound on p, the parameter of the contained random graph. The second
method overestimates this upper bound by concentrating on only one realization factor. Of course,
for every single tree distance class, ρ∗k could be much higher than ρk and still show only #r(k)
realized edges. But if ρ∗k were the real parameter of the random graph contained in this then all
other tree distance classes should also show expectedly at least ρ∗k#p(k) realized edges, and if this
value is higher than #r(k) in all tree distance classes, than it is simply unlikely that ρ∗k is the
correct realization factor. Thus, the second method leaves room for improvement but still we get
a valid upper bound and thus an impression of how much the graphs might be generated by a
random process.

Furthermore, this first analysis shows that very different relative tree distance distributions were
obtained by the method. So, what could create a steep relative tree distance distribution in a
real–world network? There is one obvious and one intuitive answer: the obvious model is that the
vertices are positioned in a hierachical system, as, e.g., the hierarchy in a big company, and an
edge is more likely to exist the smaller the distance of the two vertices in the hierarchy is. Such
a model has already been proposed and shown to occur in reality in HP labs [2]. In this paper,
the relative tree distance distribution was measured as given by the organizational hierarchy, and
was fitted by an exponential function e−ak with parameter a = 0.94 and k the tree distance. Note
that Kleinberg also proposed a model based on a hierarchy where the vertices are more likely
connected if they are close within that hierarchy [127]. The difference from the first model is that
in this hierarchy the vertices are only leaves and the inner vertices of the hierarchy do not represent
vertices, whereas in the hierarchy in a company every position is occupied by one of the vertices.

However, grids also produce a relative tree distance distribution with at least a polynomial decay
of the realization factor as a function of k as seen in Fig. 5.5(a) and we know that the vertices
are not positioned in a hierarchy but in a 2–dimensional grid. Actually, our intuition is that a
steep relative tree distance distribution is positively correlated with a local network–generating
process, i.e., if vertices are assigned a position in space and edges with small distance are more
likely than long ones, the resulting network will show a steep relative tree distance distribution.
But in fact, such a straightforward correlation does not seem to exist. As with the clustering
coefficient, and the (k, l)-locality introduced by Chung and Lu (s. 4.2.3), there are embeddings
of vertices in a d-dimensional space and local network–generating processes like the unit-distance
network–generating process that will lead to a relative tree distance distribution that is not steep,
that is not even monotonically non-increasing. Thus, the only thing we know for sure when we
find a steep relative tree distance distribution is that the graph cannot contain a large random

5. Network–Generating Systems and Processes 78

graph component. However, such a steep relative tree distance distribution does say that there is
a hierarchical embedding, i.e., the assignment of positions in a hierarchy, such that the edge set
is weakly local. We will later show that indeed these different tree distance distributions can be
used to compute certain problems efficiently, and thus we want to formally introduce the notion
of a new locality definition.

5.3.1 Hierarchically Embeddable Local Graphs

As discussed in 4.2.4, there are two types of graphs. The first class, in which the vertices are as-
signed positions in a metric space that defines a (geometric) distance between any two vertices, will
be called embedded graphs. The second class of graphs contains those where the only information
about the structure of the graph is given by the adjacency matrix (non-embedded graphs). If there
is no information about the position of vertices, i.e., only the adjacency matrix is given, there is so
far no measure to determine whether the network–generating relationship is local in the sense of
Definition 4.2, but at least one can try to find an assignment of positions such that the edges are
local, i.e., find an embedding for the vertices such that the edges are local. If such an assignment
can be found, a graph will be called embeddable local. We thus generalize the definition of locality
of a graph as follows:

Definition 5.1 (Embeddable Local Graphs)
We define a graph to be embeddable local if there is an embedding E : V → S of the vertices into
a metric space5 S such that the relation given by the set of edges E in the graph is local to some
degree as defined in Definition 4.2.

Note that this generalized definition includes those embedded graphs that are local as defined by
their embedding. Note also that an embedded graph that is not local as defined by its embedding
might be local with respect to another embedding.

The distances between vertices as defined on the basis of an (undirected) spanning subgraph fulfills
the requirements of a metric distance measure: The distance between two vertices is 0 iff they are
the same vertex, the distance is symmetric, and the triangle inequality holds. Thus, if we can
find a spanning tree such that the relative tree distance distribution can be described by a non-
increasing monotonic function, the graph can be said to be embeddable weakly local. Since the
metric space in which the graph is embedded is somewhat peculiar and a spanning tree resembles
most closely a hierarchy, we will call such an embeddable weakly local graph a hierarchically
embeddable weakly local graph. This leads consequently to the question whether there are also
hierarchically embeddable strongly local graphs. To answer this question we have computed the
absolute tree distance distributions of the same real–world networks as above, shown in Figs. 5.9,
5.10 and 5.11.

The distributions are given for the same randomized Kruskal spanning trees as above, and show
very different distributions, some of which are fittable by simple functions. Note that we have
normalized the values by the total number of edges in the graph, i.e., for the co–authorship network

5 A metric space is a non-empty set S of points with a distance function δ : S × S → R
+ such that for all

x, y, z ∈ S:

1. δ(x, y) = 0 if and only if x = y.

2. δ(x, y) = δ(y, x), i.e., δ is symmetric.

3. δ(x, y) ≤ δ(x, z) + δ(z, y), i.e., the triangle inequality is valid.

5. Network–Generating Systems and Processes 79

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 10 20 30 40 50 60 70 80 90

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

Word Association

(a) word–association graph

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 5 10 15 20 25 30 35 40 45 50

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

f(x)= (1.67+/- 0.0303)/x^4

1995-1999
f(x)

(b) co–authorship network

Fig. 5.9: Absolute tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

(Fig. 5.9(b)) and the co–purchasing networks in Fig. 5.10(a) more than 10% (9% in the case of the
data set starting the Lutheran Bible) of all edges are in tree distance 2.

By this kind of spanning tree, at least the co–purchasing and the co-authorship data can be
fitted quite well by a steep and monotonically falling function (although the co-authorship data is
somewhat questionable). The protein-protein interaction data could also be called hierarchically
embeddable strongly local, while the word–association, the word adjacency, and the autonomous
system networks are not hierarchically embeddable strongly local, at least not with this kind of
spanning tree.

Of course, the definition given above does only say that a graph is hierarchically embeddable local
if there exists a spanning tree such that the relative and/or absolute tree distance distribution is
monotonically non-increasing. We will thus discuss in the next section whether it is possible to

5. Network–Generating Systems and Processes 80

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 5 10 15 20 25 30 35 40 45 50

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

fit g(x) = (0.47+/-0.0106)/x^(1.59+/-0.0130)
fit h(x) = (0.39+/-0.0062)/x^(1.68+/-0.0104)
fit i(x) = (0.43+/-0.0105)/x^(1.59+/-0.0141)

Harry Potter
g(x)

Bible
h(x)

Jane Austen
i(x)

(a) co–purchasing network of books

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 5 10 15 20 25 30 35 40 45 50

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

1998 03
1998 09
1999 03
1999 09
2000 03
2000 09
2001 03

(b) autonomous system network

Fig. 5.10: Absolute tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

find spanning trees that optimize the absolute tree distance distribution.

5.4 A Quality Measure for Spanning Trees

To show whether a given graph is hierarchically embeddable strongly local it is necessary to find
one spanning tree that induces a monotonically non-increasing absolute tree distance distribution.
It is an unusual approach to optimize a distribution directly since it is hard to parameterize such
a distribution, thus we concentrated on the question of whether it is possible to find a spanning
tree that minimizes the sum of the tree distances. The motivation is that such a spanning tree
would somehow capture the essence of the graph’s structure in the sense that a group of vertices

5. Network–Generating Systems and Processes 81

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 5 10 15 20 25 30 35 40 45 50

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

mu = 11.832624+/-0.192608

sigma = 8.103945+/-0.154176

word adjacency
normal(x)

(a) word adjacency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 5 10 15 20 25 30 35 40 45 50

pe
rc

en
ta

ge
 o

f
ed

ge
s

tree distance k

PPI

(b) protein–protein interaction graph

Fig. 5.11: Absolute tree distance distributions of various real–world networks (s. 8.1 for details on the
data). The findings are discussed in the text.

that is densely connected in the graph is also near in the spanning tree6. A spanning tree with a
low sum of the tree distances is thus called a backbone of the graph. We will now formally define
this measure and give some simple lower and upper bounds in the next section.

6 There is a huge bibliography on different types of spanning subgraphs. Often, a subgraph is searched such that
average or the maximum ratio between the distance in the subgraph and the distance in the graph is lower
than a given t. Such a subgraph is called a t spanner and can be used for overlay networks in communication
networks [172, 196]. In this sense we search for a spanning tree in which the average distance of all those pairs
of vertices that are connected by an edge in the full graph is minimized.

5. Network–Generating Systems and Processes 82

5.4.1 A Quality Measure for Spanning Trees and Some Simple Lower Bounds

With this intuition we define the quality Q(T) of a given spanning tree as:

Q(T) =
∑

e∈E

dT (e) (5.10)

A backbone is said to be an optimal backbone if it minimizes Q(T). Technically, the problem of
finding an optimal backbone is similar to that of finding the ”Shortest Total Path Length Spanning
Tree” ([205], p. 206, problem [ND3]) that is defined as follows:

Instance: Graph G = (V,E), integer bound B ∈ Z
+.

Question: Is there a spanning tree T for G such that the sum, over all pairs of u, v,∈ V , of the
length of the paths in T from u to v is no more than k?

The difference between the tree searched in this problem and the optimal backbone is that the
latter restricts the sum to those pairs u, v that are connected by an edge in G, i.e., (u, v) ∈ E
instead of (u, v) ∈ V ×V . It is known that the shortest total path length spanning tree problem is
NP-hard [205], but this does not necessarily mean that finding the optimal backbone also has to
be NP-hard. However, in 5.4.2 we show that this restricted problem is also NP -hard to compute.

We will now give some simple upper and lower bounds on this measure. A trivial lower bound for
Q(T) is given by 2(m−n+1) since the spanning tree contains n−1 edges, and every non-tree edge
spans at least tree distance 2. This lower bound is, for example, met by a clique if the spanning
tree consists of one vertex and all incident edges. The following procedure computes a non-trivial
lower bound that depends on the structure of the given graph: For every edge e = (v, w) the
distance dE\{e}(v, w) is computed. Let Σ(G) denote the sum of the m − (n − 1) lowest values of
dE\{e}(v, w).

Corollary 5.1
Σ(G) is a lower bound for Q(T) for any spanning tree T in G.

Proof 5.1
Let T ∗ denote an arbitrary spanning tree with minimal Q(T ∗). Let e be one of the n− 1 edges in
T ∗, then its weight does not contribute to Q(T ∗). If e = (v, w) is not in T , dT ((v, w)) cannot be
smaller than dE\{e}(v, w). Since we do not know which edges will be in T ∗, we disregard the n− 1
highest values of dE\{e}(v, w) and thus, Σ(G) is a lower bound for Q(T ∗). �

However, for real–world networks both lower bounds often coincide because almost all edges take
part in at least one triangle. A simple upper bound is given by (m − n + 1) · (n − 1) since every
non-tree edge can at most have n− 1 edges in their tree path. In the following we will show that
computing a spanning tree with minimal Q(T) is NP -hard.

5.4.2 Finding the Optimal Backbone is Hard

A problem P is said to be NP-hard if all problems of the complexity class NP can be reduced to
P polynomially, i.e., if every problem P ′ in NP can be transformed into an equivalent problem
that - if it is solved by an algorithm for the problem P - also yields a solution for P ′. If such a
transformation is found, problem P ′ is said to be reduced to P. So far, no efficient algorithm has
been found for any of the problems in NP. We will show here that finding the optimal backbone of

5. Network–Generating Systems and Processes 83

a graph is hard because the well-known NP-hard ‘Exact 3 Cover’ problem ([205]) can be reduced
to it.

Optimal backbone of a graph
Given: A graph G that is simple and undirected.
Solution: A spanning tree T ∗ with Q(T) = minT

∑

e∈E\T dT (e).

where dt(e) denotes the distance of the end-vertices of e in T .

Theorem 5.1
Finding the optimal backbone is NP-complete.

We will first show that the Exact 3 Cover Problem can be solved if and only if a corresponding
graph G has an optimal backbone T with a uniquely defined Q(T). The Exact 3 Cover Problem is
defined as follows:

Exact 3 Cover
Given: A set X of 3n elements X = {x1, x2, . . . , x3n} and a set C of triples ci ⊂ X.
Solution: A subset C ′ ⊆ C with |C ′| = n with ∪c∈C′c = X.

If there is at least one element xk that is not an element of at least one set ci ∈ C, there is no
exact 3 cover and this can be determined in O(|C|). It is thus assumed that every xi is an element
of at least one ci. W.l.o.g., we will further assume that all triples ci ∈ C are unique.

Let now G = (V,E) be built in the following way:

V = {r}

∪
{

rcij , 1 ≤ i ≤ |C|, 1 ≤ j ≤ 3n(3n− 1)

2
+ 1

}

∪ {ci, 1 ≤ i ≤ |C|}

∪
{

cxij
k , 1 ≤ i ≤ |C|, xj ∈ ci, 1 ≤ k ≤ 3n(3n− 1)

2
+ 1

}

∪ {xi, 1 ≤ i ≤ 3n}

E = ERC = {{r, ci}, 1 ≤ i ≤ |C|}

∪ ERRC =

{

{r, rcij}, 1 ≤ i ≤ n, 1 ≤ j ≤ 3n(3n− 1)

2
+ 1

}

∪ ERCC =

{

{rcij , ci}, 1 ≤ i ≤ n, 1 ≤ j ≤ 3n(3n− 1)

2
+ 1

}

∪ ECCX =

{

{ci, cxij
k }, 1 ≤ i ≤ n, xj ∈ ci, 1 ≤ k ≤ 3n(3n− 1)

2
+ 1

}

∪ ECXX =

{

{cxij
k , xj}, 1 ≤ i ≤ n, xj ∈ ci, 1 ≤ k ≤ 3n(3n− 1)

2
+ 1

}

∪ ECX = {{ci, xi}, xi ∈ ci}
∪ EXX = {{xi, xj} ∃ci, xi, xj ∈ ci}

5. Network–Generating Systems and Processes 84

r

rc

rx

X

1 2 3 4 5

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 5.12: A graph constructed from an exact 3 cover instance. The vertices in row X represent the
elements xi, and the vertices in row C represent the tripels. An additional root is connected to all subsets
ci, a tripel ci is connected to all its elements xi. All pairs xi, xj that are contained in at least one ck,
are connected. The vertices rxij , rcij (indicated by small, black vertices) are added to ensure that edges
between r and ci and between ci and xj are favoured over edges between any pair of xk, xl. Note that
every edge between r and C and between C and X is shielded in the same way.

The graph thus has

|V | = 3n+ 1 + |C|
(

4 ·
(

3n(3n− 1)

2
+ 1

)

+ 1

)

(5.11)

and

|E| = |C|
(

4 + 8

(
3n(3n− 1)

2
+ 1

)

+ 6
3n(3n− 1)

2
+ 1

)

+ |EXX | (5.12)

edges. Fig. 5.12 shows an exemplary construction.

Vertices ci and xi correspond to the elements of C and X with the same names, and the newly
introduced vertex sets RC and RX constitute vertices that are somewhat ‘shielding’the edge
between a certain ri and ci, and ci and xi, respectively, as will be seen in the following proof.
Triangles {r, rcij , ci} and ci, cx

ij
k , xj are also called shielding triangles.

We will first show that every minimal backbone consists only of edges from E \ {XX} and that no
two subsequent shielding edges, neither from r to any ci nor from any ci to any xj , can be in T .

Lemma 5.1
A minimal backbone never contains a pair of edges e1 = {r, rcij} and e2 = {rcij , ci} nor a pair of

edges e′1 = {ci, cxij
k } and e′2 = {cxij

k , xi} .

Proof 5.2
Let T be a spanning tree that contains e1, e2 for any ci, and T ′ the tree that results by replacing
one of the edges by the edge e = {r, ci}. Then there are four kinds of paths in the tree, containing
either only e1, only e2, both, or none. Paths containing neither e1 nor e2 will not be changed
in T ′. Paths containing e1 and e2 will now be shorter by one edge. Note that paths containing
only one of the edges e1, e2 are those that start (or end) in rcij . Note further that the number of
paths ending in rcij containing e1 is equal to the number of vertices in the subtree rooted at r,

5. Network–Generating Systems and Processes 85

and that the number of paths ending in rcij containing e2 is equal to the number of vertices in the
subtree rooted at ci. All the paths containing only ei, i = {1, 2} will be increased by one edge if it
is replaced by e but paths containing only e(3−i) are not affected. Thus, by replacing that edge ei

by e that has fewer paths ending in it (or at most the same number), the new tree T ′ will have a
strictly better Q(T ′) in contradiction to the assumption. An analogous proof holds for edges e′i, e

′
j .

�

It is clear that from every cycle in G at least one edge has to be removed in order to get a spanning
tree. We will now show that no edge from EXX can be contained in T .

Corollary 5.2
No minimal backbone contains an edge from EXX .

Proof 5.3
Let e = {xi, xj} be an edge from EXX that is contained in T . There are two cases:

1. Both xi, xj have only one ck to which they are both connected, i.e., from the triangle ck, xi, xj

exactly one edge is not in the tree, say the edge between ck and xi that now has a tree distance
of 2. It follows that all shielding triangles ck, cxki, xi of the one non-tree edge will then have a
tree distance of exactly 3. Let T ′ denote the tree resulting from exchanging the edge {xi, xj}
with {ck, xi}. Now, the replaced edge and all non-tree edges in the shielding triangles will
have tree distance 2. Thus, the new tree would have a lower Q(T ′) in contradiction to the
assumption.

2. The combined neighbourhood of xi and xj contains more than one ck, say ck and cl. Thus,
there is a cycle in G, containing xi, ck, r, cl, xj . At least one of the edges in this cycle cannot
be in T . Let {xi, ck} be this edge. Then, from each shielding triangle ck, rcki, xi also one

edge cannot be in T , say all edges {xi, rckp}, 1 ≤ p ≤ 3n(3n−1)
2 + 1. In the best case where

all other edges of the above given cycle are in T , all of these 3n(3n−1)
2 + 1 edges have a tree

distance of 5 but they could have had a tree distance of 2 if {ck, xi} had been in T . The same
is true owing to reasons of symmetry if the edge {cl, xj} is not contained in T . If one of the

edges {r, ck} or {r, cl} is missing the tree distance of 3n(3n−1)
2 + 1 non-tree edges is increased

from 2 to 5. Observe further that for the combined neighbourhood of xi, xj exactly one edge
to any of the possible ck is in T .

Thus, every edge in EXX that is contained in T will have to counterbalance this amount by
decreasing the tree distance of other edges. Because of the above argument, the tree distance
of non-tree edges from ER∪ERRC ∪ERCC ∪ECCX ∪ECXX ∪ECX will at most be increased,
but not decreased. Thus, the only possibility to decrease the tree distance of non-tree edges
is provided by edges from EXX . As stated before, any vertex xi can be connected with
all other vertices xj , i 6= j and these can all be interconnected. If the spanning tree only
consisted of edges from ER ∪ERC ∪ERX , none of the non-tree edges from EXX would have
a tree distance of more than 5. If all edges from EXX incident to one vertex xi were in T ,
then all other edges between the neighbours xk, xl would have a tree distance of 2. Even
if xi was incident to all other vertices in X and all of them were pairwise connected, this

would reduce the tree distance of no more than 3n(3n−1)
2 edges from 5 to 2. Since there are

3n(3n−1)
2 +1 shielding triangles around every edge in RC and CX, it is not possible that any

edge from EXX is contained in T .

�

5. Network–Generating Systems and Processes 86

Combining these properties, no edge of EXX can be in T . Furthermore, for every shielding triangle
it cannot be that the two shielding edges are part of the tree. Note that if one of the edges in RC
is not in T , then at least one edge of EXX has to be in T to make it a spanning tree. It follows
directly that all edges of RC have to be in T and that all non-tree edges of the shielding triangles of
these edges contribute a tree distance of 2 to Q(T). To ensure that all vertices in X are connected
to the spanning tree, every one of them chooses exactly one of its possible edges to a vertex in
C, yielding 3n vertices from CX that are in T . The non-tree edges of their shielding triangles
contribute tree distance 2 to Q(T). The 3|C| − 3n vertices from CX that are non-tree edges have
a tree distance of 3 and the non-tree edges of their shielding triangles have a tree distance of 4.
Since this is fixed for every minimal backbone, the sum of the tree distances for all non-tree edges
in E \ |EXX | is fixed. The only difference lies in the sum of the tree distances of edges in EXX .
These can either have tree distance 5 or 2. An edge in EXX has a tree distance of 2 if and only if
both endpoints are connected by a tree edge to the same vertex ci. Since there are only 3n edges
between C and X in the tree, there can be at most 3n edges that have a tree distance of 2 and
this will only happen if there are exactly n vertices in C whose edges to all their elements are in
T . If such a tree is found, the solution of the exact cover is given by those vertices in C whose
edges to vertices in X are all in T . The result is summarized in the following lemma:

Theorem 5.2
A minimal backbone with Q(T) =

(
3n(3n−1)

2 + 1
)

(20|C| − 12n) + 4|EXX | − 15n in G gives a

solution to the exact 3 cover problem.

Conversely: If there is a solution C∗ to the Exact 3 Cover then construct the spanning tree T ∗

in the following way: All edges in ER ∪ERC to r are tree edges. All edges incident to a set ci that
is an element of C∗ are tree edges. Since the union of all sets in C∗ is S, the tree thus defined
is a spanning tree. It is easy to check that this spanning tree has the minimal Q(T) as given by
Lemma 5.2. This concludes the proof that finding an optimal backbone is NP–hard.

Although finding the optimal spanning tree is NP-hard, there are some graph classes for which the
minimal tree distance sum Q(T) can be characterized tightly. In the following we will give such
an analysis for a subset of random graphs from the G(n, p) family.

5.5 BFS Trees as an Approximation of Optimal Backbones

In this section we will analyze whether a certain simple class of spanning trees called randomized
BFS trees can be used to calculate constant factor approximations of optimal backbones. A
randomized BFS tree is constructed by starting a breadth first search ([57]) at some vertex r with
which the distance of all other vertices to r can be computed. Subsequently, every vertex besides
r chooses one of its neighbors with a lower distance to r as its father in the tree. This simple
procedure constitutes a spanning tree and needs O(m) time for the construction (Fig. 5.13).

We will first analyze a positive example where indeed a randomized BFS tree gives a constant
factor approximation of the optimal backbone in 5.5.1, and then show in 5.5.2 that this is not the
case for general graphs.

5.5.1 A Tight Bound for the Optimal Q(T) in Random Graphs

In the following we will show that a simple backbone yields a constant factor approximation to the
optimal backbone for a subset of the random graph family. To do so, we first need some further
definitions.

5. Network–Generating Systems and Processes 87

3

3
2

2

3

5

1

2

3

2

6

ss

(a)

Fig. 5.13: (a) Colored circles denote the vertices in the same distance to root r; (b) Every vertex at
any distance i except s itself will mark exactly one incident edge to a neighbor in distance i-1. This results
in a spanning tree of the network (red edges). Dashed edges are those that are in the full network but
not in the tree (non-tree edges). The numbers assigned to the non-tree edges in the drawing denote the
backbone distance of a non-tree edge (v,w), defined as the distance of v and w in the backbone.

The average tree distance is defined as Q(T)/m, and the diameter D(G) of a graph G is defined as
the maximal distance between any two vertices. To give a tight bound for the tree distance sum
in random graphs, we need Chernoff’s inequality (s. 3.7.2) and a second formulation of Bollobás’
result on the diameter of random graphs:

Theorem 5.3 (Diameter of Random Graphs ([34], p. 257))
Let c be a positive constant, k = k(n) ≥ 2 a natural number, and define p = p(n, c, k), 0 < p < 1,
by

pknk−1 = log(n2/c). (5.13)

Suppose that np/log3n→∞. Then, in G(n, p) we have
limn→∞ P (D(G) = k) = e−c/2 and limn→∞ P (D(G) = k + 1) = 1− e−c/2.

In other words, for these ranges of p and n, the diameter D(G) of almost every graph is either k
or k+1, and k = {1+o(1)} log n

log(np) . We will now show that for random graphs from this parameter

space, Q(T) is in Θ(m log n).

It is clear that the expected degree deg(v) of a vertex v is normally distributed around pn and by
Chernoff P [deg(v) > 2pn] <

[
e
4

]np
is asymptotically zero. The proof for the average tree distance

in an optimal backbone in random graphs makes use of the following lemma:

Lemma 5.2
Given two vertices v, w drawn uniformly at random, the probability that these vertices have a

distance of ≥ 1
2

(
log n

log(2np) − 1
)

is ≥ 1/2.

Proof 5.4
Since we can assume that deg(v) ≤ 2np for all v ∈ V , at most

j
∑

i=1

(2np)i ≤ (2np)j+1 vertices lie

in distance ≤ j from v. Let now j∗ be chosen such that (2np)j∗

= n
2 then the first j∗ steps can

at most contain n/2 vertices, and then only in the unlikely case that every vertex has a degree of

5. Network–Generating Systems and Processes 88

2np. This means that for a fixed vertex v, half of the choices for vertex w have a distance ≥ j∗ to
v.

(j∗) log(2np) = log(n/2) (5.14)

⇔ j∗ =
log n− 1

log(2np)
(5.15)

It is clear that every vertex w has the same chance of being in the set of vertices with distance
> j∗, i.e., the probability that any vertex w chosen uniformly at random has distance d(v, w) > j∗

is ≥ 1/2 which concludes the proof. �

Let now e = (v, w) be any edge in E. By construction of the random graph, v and w are like any
pair of vertices chosen at random from V . Thus, with probability > 1/2, the distance between
these two vertices in G\{e}, the graph without edge e, is > j∗. For any spanning tree, m− (n− 1)
edges have to be removed from the graph. By Lemma 5.2 we know that two vertices drawn at

random have a distance of more than
(

log n
log(2np) − 1

)

with probability ≥ 1/2 in the full graph, and

of course their distance can only increase in the spanning tree. Since the two endpoints of each
edge are drawn uniformly at random from the set of all edges, all m− (n− 1) non-tree edges have
a probability of ≥ 1/2 of having a distance larger than j∗, and thus the sum over all tree distances
Q(T) in a random graph is given by Ω((m− n) log n

log(2np) . Since p ≥ log3 n, limn→∞m/n →∞ and

thus the average tree distance per edge is in Ω log n
log(2np) .

On the other hand, we know that the diameter of a random graph with the above given restrictions
on np is asymptotically given by log n/ log(np), and thus, any backbone that maintains this diam-
eter induces an upper bound on the tree distance in any tree of two times its diameter, making
the bound tight. The result is summarized in the following Theorem:

Theorem 5.4 (Average Tree Distance in Random Graphs)
For np/ log3 n → ∞ and p(n, c, k) as defined in Theorem 5.3, the average tree distance in an

optimal backbone is Θ
(

log n
log(np)

)

.

This implies that such a backbone gives a constant factor approximation of the optimal tree with
respect to the average tree distance.

Lemma 5.3
Any backbone that maintains the diameter of a random graph G(n, p) with np/ log3 n yields a
constant factor approximation of the optimal average tree distance.

A simple backbone that maintains the diameter of the whole graph can be efficiently computed
in O(m) by a breadth first search as sketched above. It would of course be convenient if a BFS
tree would yield a constant factor approximation of the optimal average tree distance for all graph
classes since a BFS tree is so easy to compute efficiently, but we will now show that there are graph
classes where this is not the case.

5.5.2 A Lower Bound for the BFS Spanning Tree in a Grid

Here we will show that, in general, BFS trees cannot give a constant factor approximation to the
optimal backbone. To do so, we will first introduce the notion of the so–called BFS–number. Let

5. Network–Generating Systems and Processes 89

r be any vertex of a graph, called the root. A BFS tree is constructed by running the breadth first
search algorithm [57]. This method assigns consecutive numbers, called the BFS–number, to all
vertices in the order it approaches them for the first time, starting with 0 for r. The neighbors of
the root are then numbered consecutively in any order, assigned to r as its children in the tree,
marked as already visited, and put in a first-in-first-out data structure (FIFO list). From this
list, the first element is taken, its neighbors are numbered consecutively (if they were not already
visited), assigned to it as its children in the tree, marked as visited, and also put in the FIFO list.

Let b(v) denote the BFS-number of vertex v and let l(v) denote the level (distance to root) of v. It
is clear that for a given graph with a given order of the neighbors of any vertex, and a root vertex
r, the BFS–numbers constitute a deterministic and bijective mapping from V to the numbers from
1 to n. A direct descendant of v is a neighbor w of v with l(v) = l(w) + 1, and a descendant of v
is every vertex w whose shortest path to r contains v. v is called the (direct) ancestor of w. This
implies that there is a chain of vertices from v to w such that every two consecutive vertices in
the chain are in a direct ancestor-descendant relationship. Note that the father-child relationship
is a special ancestor-descendant relationship such that the father of a vertex is one of its direct
ancestors, and note that every vertex except the root has exactly one father.

It is known from the literature that the optimal average tree distance in two-dimensional grids is
bound from above by O(log n) ([194], p. 209). We will now show that the average tree distance in
a BFS tree of a grid is bounded from below by Ω(

√
n) and thus a BFS tree does not constitute a

constant factor approximation for the optimal average tree distance.

Corollary 5.3
Let v, w be two vertices with l(v) = l(w) and b(v) < b(w). Let x be a descendant of v and y be a
descendant of v with l(x) = l(y), then b(x) < b(y).

Proof 5.5
By induction. Since b(v) < b(w), all yet unvisited neighbors of v are assigned their BFS–number
first. Since every descendant of v is in a chain of direct ancestor-descendant relationships, this
argument can be easily applied in the induction step, finalizing the proof. �

Let the grid be divided into four regions A,B, C,D with A containing all vertices with x ≥ 0 and
y ≥ 0, B the vertices with x ≤ 0, y ≥ 0, C all vertices with x ≤ 0, y ≤ 0, and D all vertices with
x ≥ 0, y ≤ 0. Note that vertices at position 0 in the x- or y-axis are element of two adjacent
regions and thus every region contains i+ 1 vertices in distance i to r. The division is constructed
such that every region contains all ancestors of every vertex contained in it, i.e., the groups are
closed under the ancestor-descendant relation. Thus, the subtrees of the BFS tree in any region
are independent of each other, and in the following we will just observe the subtree that consists of
vertices in region A, i.e., those vertices with positive coordinates. All results can be transformed
totally analogously to the other regions by a simple coordinate transformation. In the following a
vertex v at position (x, y) will sometimes be identified with its position. v.x denotes its position
on the x-axis, v.y that on the y–axis.

If the tree in A contains branches starting at some vertex v = (x, y) such that all vertices (x, y′)
with y′ > y are descendants of this vertex in the tree, then this branch is called a vertical chain,
and if there is a vertex at (x, y) and all vertices with (x′, y) are its descendants in the tree, then this
branch is called a horizontal chain. Two adjacent vertical or horizontal chains are said to build a
so-called vertical (horizontal) channel. We will now introduce the notion of a branching vertex: a
vertex in the subtree of the BFS tree in region A is called a branching vertex if it has two children.
A vertex v in the same level as some other vertex w is said to be above (below) w if v.y > w.y
(v.y ≤ w.y). Note that a vertex v above w is also left of it since the sum of their coordinates is the

5. Network–Generating Systems and Processes 90

same, i.e., v.x + v.y = w.x + w.y, otherwise the vertices were not in the same level. We will now
state a general lemma that explains the correlation between branching vertices and the emergence
of channels.

Lemma 5.4
1. In the BFS tree in region A there is at most one branching vertex bv(i) at position

(bv(i).x, bv(i).y) in any level i.

2. For all levels i > 0, a branching vertex is always the child of the branching vertex in level
i− 1. Thus, if there is no branching vertex in level i there will be no branching vertex in any
of the levels i′ > i.

3. The branching vertex always has the lowest BFS–number in that level (in that region).

4. The branching vertex starts one vertical chain and is contained in a horizontal chain, or vice
versa. This implies that all vertices above the branching vertex are part of vertical chains,
all vertices below the branching vertex are part of horizontal chains, and thus, all chains to
the left of the branching point constitute vertical channels and all to the right constitute
horizontal channels.

Proof 5.6
The proof is done by induction on the number of levels in the BFS. It is clear that at level 0 (the
root) the tree in region A consists of the root itself (that is contained in all regions), and its two
children with positive coordinates in level 1. Thus, there is only one vertex with two children, and
this is the branching vertex. The branching vertex has the lowest BFS–number of that level since
it is the only vertex. Now we have to show that it is the root of one vertical and one horizontal
chain. As is easy to see, there is only one possible shortest path to vertices at position (0, y), y > 0
or (x, 0), x > 0, namely through vertex (0, y− 1) and (x− 1, 0), respectively. Thus, vertex (0, 0) is
the ancestor of all vertices (0, y) with y > 0 and the ancestor of all vertices (x, 0) with x > 0.

For the induction step we assume that in level i of the BFS tree in region A the lemma is correct.
Then there is at most one branching vertex with two children. We will first discuss the case in
which there is one branching vertex bv(i). Since it had the lowest BFS–number of all vertices in
level i (in region A), its children will also have a lower BFS–number than all other vertices in level
i + 1 as stated in Corollary 5.3, and one of them will have a lower BFS–number than the other,
say vertex z. Note that every vertex in a region knows exactly two neighbors in the same region
in the next-higher level if it is not on the border of the grid. Since z has the lowest BFS–number
its neighbors in the next level will be assigned to it as children, and thus z is the branching vertex
of level i+ 1. We will now show that z is either part of one horizontal chain and starts a vertical
chain or vice versa. Let z be the child at (bv(i).x, bv(i).y + 1). Since bv is contained in a vertical
and a horizontal chain (independent of which one started there, it is contained in both), and z is
at (bv(i).x, bv(i)y. + 1), it is contained in the same vertical chain. We thus have to show that it
starts a horizontal chain.

Note first that every vertex v at position (v.x, v.y) in region A is an ancestor of all vertices w
with w.x + w.y = v.x + v.y + (w.x − v.x) + (w.y − v.y) due to the definition of shortest paths
and the ancestor-descendant relationship. Especially, z is the ancestor of all vertices (x′, z.y). All
vertices at (x′, z.y) have at most two different direct ancestors in region A, namely (x′−1, z.y) and
(x′, z.y− 1). Note that these vertices are in the same level, and that (x′, z.y− 1) is the descendant
of the vertex (z.x+1, z.y−1) that is in the same level as z, and that (x′−1, z.y) is a descendant of
z. Because of corollary 5.3 and the fact that the BFS–number of z is lower than every other BFS–
number in the same level, the BFS–number of (x′− 1, z.y) is also smaller than that of (x′, z.y− 1),
and thus by induction vertex z is the father of (z.x+ 1, z.y), and in general (x′, z.y) is the father

5. Network–Generating Systems and Processes 91

of (x + 1, z.y), concluding the proof that if the branching vertex z = bv(i + 1) of level i + 1 is at
(bv(i).x, bv(i).y + 1) then it is contained in one vertical chain and starts a horizontal chain. It is
easy to show that if bv(i+1) is at (bv(i)x+1, bv(i).y), then the opposite will be the case. Note that
this part of the lemma implies that every vertex above the branching vertex of a level is contained
in a vertical chain and that every vertex below it is contained in a horizontal chain. It is now clear
that if a branching vertex has two children where the one with the smaller BFS-number is at the
(say, right) border of the grid then this vertex will only have one child in the next level and thus
not be a branching vertex. It will nonetheless start a last vertical chain since it is the child of the
branching vertex in level i at position (bv(i).x+ 1, bv(i).y).

Since it is at the right border of the grid, and we know by the assumption that all vertices above
the branching vertex in level i are contained in vertical chains and itself starts a last vertical chain,
there are now bv(i).x+ 1 vertical chains in parallel. In every level i′ > i+ 1 there cannot be more
than bv(i).x+1 vertices, and thus no further branching vertex can ever emerge in subsequent levels
which concludes the proof. �

We have now shown that every BFS tree consists only of vertical and horizontal chains and that
these constitute vertical and horizontal channels. We have also shown that every branching vertex
(besides the root) is the direct child of the branching vertex of the preceding level and that there
is at most one branching vertex in every level. We can thus define the path from the root to the
last branching vertex as the trajectory of the branching vertex. The trajectory of the branching
vertex in one region defines where new channels emerge, and since the trajectory of the branching
vertex is determined by the ordering of the neighbors of a vertex, the tree distance sum of a BFS
tree in a grid is easy to calculate if this order is given.

Here, we only want to give a lower bound for the BFS tree with minimal Q(T) for any possible
neighboring order. For this, we need the notion of a face of the grid which is simply any region
enclosed by the vertices (x, y), (x+1, y), (x+1, y−1), (x, y−1) with 0 ≥ x < √n and 0 < y ≥ √n.
We will identify each face f by its upper left vertex (x, y). It is clear that at least one of the
edges of such a face cannot be in the tree. Furthermore, since the tree allows only for horizontal
or vertical channels, it is cheapest for any one face to open to the side of the grid that is closest.
Beginning at the outermost faces of the grid, it is thus best to open them directly to the outer
face. Faces that are adjacent to the outermost face should open to that face, and so forth. There
are 4 · (√n−1) outermost faces, 4 · (√n−3) that are adjacent to an outermost face, and in general
4 · (√n− 2i− 1) faces in shortest distance i to an outermost face 7. One of the optimal BFS trees
is depicted in Fig. 5.14.

For the computation of the tree distance sum it is easiest to reverse the tree distance assigned to
the non-tree edges of the same channel, i.e., to exchange the tree distances of the outermost edge
with the innermost edge, and so forth. The motivation behind this idea is that the innermost face
in a channel determines the tree distance of the outermost face. Similarly, we exchange the tree
distance of the second outermost with the one of the second innermost, and so forth. In this sense,
an outermost face causes one non-tree edge with tree distance 3, and in general, a face in distance
i from the outer face causes one non-tree edge with tree distance of 2i+ 1. The tree distance sum
Q(T) for such an optimal BFS tree for odd

√
n is then given by:

Q(T) = 4

√
n−1
∑

i=1

(
√
n− 2i+ 1)(2i+ 1) (5.16)

7 For even
√

n. For odd
√

n, there is one additional face in distance
√

n/2 + 0.5

5. Network–Generating Systems and Processes 92

Fig. 5.14: One of the trees with the lowest Q(T) a BFS tree in a grid can have.

= 4

√
n−1
∑

i=1

2i
√
n− 4i2 + 4i+ 1 (5.17)

= 8
√
n

√
n−1
∑

i=1

i− 4

√
n−1
∑

i=1

i2 + 4

√
n−1
∑

i=1

i+

√
n−1
∑

i=1

1 (5.18)

= 4n(
√
n− 1)− 4

√
n−1
∑

i=1

i2 + 2(n−√n) +
√
n− 1 (5.19)

The lower bound for Q(T) of the best BFS spanning tree is thus in Ω(n
√
n) and the average tree

distance in Ω(
√
n). This implies that the best possible value of Q(T) obtained by a BFS spanning

tree is higher by a factor of
√
n, which concludes the proof that BFS trees do not yield a constant

factor approximation in general. �

At about the time we concluded the NP–hardness proof and conducted the first analyses, we learned
that the question of finding a minimal backbone had already been posed by Alon, Karp, and Peleg
in 1995, although under a totally different perspective and without an NP–hardness proof of the
problem [9]. Then we found a connection of the same problem to very old problems in computer
science, namely to the minimum length (fundamental) cycle base problem and the minimum length
(fundamental) cut base problem [64, 103]. Since all of these problems have important implications
for a series of very different applications, we will review the literature on these problems in the
following section.

5.6 Problems Related to Finding the Optimal Backbone

The first to consider the question of finding an optimal backbone were Alon, Karp, Peleg, and
West in 1995 [9]. They showed that the optimal backbone in a 2-dimensional grid with n × n
vertices has an optimal average backbone distance of Θ(log n), i.e., Q(T) ∈ O(m log n). In 2005,
Elkin, Emek, Spielman and Teng showed that every graph has an optimal backbone such that the
average backbone distance is in O(log2 n log log n) [73]. Using their algorithm, Elkin et al. report

5. Network–Generating Systems and Processes 93

that various theoretical problems like solving linear systems by an algorithm presented by Spielman
and Teng [222] or finding an approximation to the ‘Minimum Communication Cost Spanning Tree
Problem’ ([205], problem [ND7]) by an algorithm presented by Peleg and Reshef can be improved
[195]. An interesting open question is whether the bound can be improved from O(log2 n log log n)
to O(log n), and whether the construction time of the algorithm can be reduced to O(m log n).
Elkin et al. state that if so, the runtime of the Spielmann and Teng algorithm can be further
reduced [73].

However, the problem of finding an optimal backbone is also very closely related to the problem of
finding a minimum length fundamental cycle base as defined by a spanning tree, as we will show
in the following.

Fundamental Cycle and Cut Bases and Their Relationship to the Optimal Backbone

The first ideas for analyzing graphs with respect to their cycle base was initiated by Kirchhoff
to describe eletrical circuits ([123]). We will now give the necessary definitions. Let G be an
unweighted, connected graph. A cycle C is a set of edges {e1, e2, . . . , ek} such that the subgraph
induced by C is a connected graph in which every vertex has even degree. C can also be described
by an m-dimensional vector ∈ {0, 1}m where the jth entry is 1 iff ej is in C and 0 otherwise.
The cycle space C(G) is the set of all cycles C. A cycle base B is a subset of independent cycles
such that the vector of every cycle C that is not element of the basis can be constructed by an
XOR operation on a subset of vectors of B. The number of cycles in this subset is given by the
cyclomatic number of a graph, i.e., m−n+c where c denotes the number of connected components
in the graph.

A cycle base is called a fundamental cycle base if there is an ordering of the cycles in the bases
{C1, C2, ..., Cm−n+c such that for every cycle Ci the intersection of Ci with the union of all its
predecessors Cj , j < i is non-empty. Such a cycle base can be obtained by computing an arbitrary
spanning tree T in every component of G, since every edge e 6∈ T now induces a cycle on T , denoted
by C(e) [193]. It is easy to see that these are m − n + c cycles, and since every cycle contains at
least one edge that is not an element of any other edge, they are independent of each other, thus
constituting a cycle base. Furthermore, every ordering of these cycles will satisfy the definition
of fundamentality. Note however that not every cycle base and not even every fundamental cycle
base can be defined by a spanning tree of the graph [104, 157].

The length L(C(G) of a cycle base C(G) of G is defined as the sum over the cardinalities of all
cycles in the base, i.e.,

L(C(G)) =
∑

Ci∈C(G)

|Ci(G)|. (5.20)

For a fundamental cycle base note that for every e 6∈ T the cycle it induces includes one more
edge than its tree path, i.e., |C(e)| = td(e) + 1. The problem of finding a bound for the minimum
length L(CT (G)) of a fundamental cycle base induced by spanning tree T has already been stated
in 1982 by Deo, Prabhu, and Krishnamoorthy [61], and they could show that it is NP-complete.
Of course, a spanning tree that minimizes L(CT (G)) also minimizes Q(T) and vice versa8.

Astonishingly, computing a minimum length cycle base that is not fundamental can be done
efficiently; actually it can be computed by a simple greedy algorithm since it is a matroid.
The first algorithm was given by Horton with a runtime of O(mαn) for a weighted, undirected

8 Note that the authors used a different reduction than the one we used and that the proof was achieved inde-
pendently [61].

5. Network–Generating Systems and Processes 94

graph where α denotes the matrix multiplication constant [109]. This runtime was improved to
O(max{m3,mn2 log n}) by Berger et al. by turning a fundamental cycle base defined by an arbi-
trary spanning tree into a minimal cycle base [30]. Horton could also show that for an unweighted
graph the length of a minimal cycle base is bound by O(n2). Note however, that the upper bound
of O(m log2 n log log n) obtained by Elkin et al. for Q(T) is also an upper bound on the length
of a minimal cycle base and thus improves this bound [73]. Minimum length cycle bases are im-
portant for different applications, among others the analysis of electrical networks, for building
efficient databases with which chemically similar molecules can be retrieved [111], and periodic
event scheduling [159].

Similarly to the cycle space there is also a cut space of a graph. A cut is a set of edges such that if
these edges are removed the graph is decomposed into different components. Again, a cut can be
represented by an m-dimensional vector in {0, 1}m where the jth field is 1 iff the edge ej is in the
cut. The cut space of G contains all cuts of the graph, and a cut base is again a minimal set of
cuts such that all possible subsets of edges of G can be obtained by xor combinations of the cuts.
Also here, a spanning tree T of G induces a fundamental cut base in the following way: Let e be
an edge in T , then its removal in T leaves two connected components (in T) whose vertex sets are
denoted by V1 and V2 [211]. As the induced cut set CS(e) we will now assign to e the set of all
edges f = (v, w) with v ∈ V1 and w ∈ V2 besides e itself, i.e., the set of edges in the graph that
have to be removed to disconnect V1 from V2. For simplicity, cs(e) denotes the cardinality of e’s
cut set. We will now cite a proposition that states the fundamental duality between the cut set of
a tree edge and the cycle set of a non-tree edge:

Proposition 5.1 ([103], p. 195)
Let T be a spanning tree of a connected, unweighted graph, and let C be a fundamental cycle with
respect to a non-tree edge e∗. Then the edge set of cycle C exactly consists of edge e∗ and those
edges of T whose fundamental cut sets contain e∗.

With this simple proposition it is clear that if non-tree edge e has tree distance k in a given spanning
tree T , it is contained in exactly k cut sets of the same spanning tree. Thus, the following equality
is valid:

Q(T) =
∑

e 6∈T

td(e) =
∑

f∈T

cs(f). (5.21)

We have now shown that all of these problems that are deeply related to the optimal backbone
have an interesting variety of applications, and we have shown above for some real–world networks,
namely for the co–authorship network (Fig. 5.9(b)) and co–purchasing networks (Fig. 5.10(a)), that
these have an absolute backbone distribution that can be fitted by a function in O(1/k), implying
that the sum of their backbone distances is in O(m log n), improving the bounds on minimum
length (fundamental) cycle bases for these networks. We thus think that a characterization of
different graph classes by the best backbone that can be found in a set of graphs from the same
family, i.e., the same network–generating process, may be helpful in the development of efficient
algorithms for the above mentioned applications.

Here we will introduce another application that depends on a good backbone to start with, namely
the visualization of large real–world networks. Because a good backbone represents a given graph
in the way that vertices that are near each other in the full graph are also near each other in the
spanning tree, we have used backbones to visualize large and complex real–world networks with
more than 1000 vertices, since the layout algorithms that are available in the yFiles graph layout
package, a leading software on this area, networks with so many vertices can most often not be
drawn in a helpful way but rather result in ball-like structures (Fig. 5.20(a)) [110]. For this it

5. Network–Generating Systems and Processes 95

was necessary to find good backbones, a task for which we developed some heuristics that often
result in backbones with a surprisingly low Q(T) compared with the lower bounds as defined above
(5.4.1). We will introduce these heuristics in the following section.

5.7 Local Optimization of the Backbone

Any given spanning tree T can be optimized by a simple procedure: the main idea is that any edge
e that is not in T would induce a cycle if it were added to T . By removing any other edge l of
this cycle, a new spanning tree T ′(e, l) := (T ∪ e)\l results. If no ambiguity is given we will reduce
T ′(e, l) to T ′ in the following. If Q(T ′) is smaller than Q(T), then e should replace l in T . We will
call e the entering edge and l the leaving edge. To analyze whether Q(T ′) is smaller than Q(T),
the following definitions are helpful: Let e be any non-tree edge, then PT (e) denotes the path in
T that connects the endvertices of e, the so-called tree path of e.

Proposition 5.2
For all non-tree edges i with l 6∈ PT (i), dT (i) will not be changed.

Proof 5.7
Since all edges of PT (i) are still in T , dT (i) cannot be increased. Assume that dT (i) is decreased
by the insertion of e. This means that there is a second path connecting the end vertices of i,
violating the tree property of T . �

Let i denote some non-tree edge whose tree path contains at least one of the edges of PT (e), and
let CT (i, e) denote the set of shared edges:

CT (i, e) := PT (i) ∩ PT (e) (5.22)

If the leaving edge l is in this set, the tree path of i will be altered. To describe the change, the
following definitions are needed (Fig. 5.15 a): Let CT (e) denote all edges in the cycle that is
introduced by adding e to T . Note that CT (e) is given by PT (e) ∪ {e}. Let CT (i, e) denote the
complement of CT (i, e) in cycle CT (e). The new tree path PT ′(i) is then given by

PT ′(i) = PT (i) ∪ CT (i, e) \ CT (i, e). (5.23)

Note that this new tree path is always the same for any fixed non-tree edge i, independent of
the identity of the leaving edge l as long as l ∈ CT (i, e) (s. Fig. 5.15 b). Thus, ∆dT (i, e) :=
dT ′(i)− dT (i) is given by:

∆dT (i, e) = |CT (i, e)| − |CT (i, e)| (5.24)

= |CT (e)| − 2|CT (i, e)| (5.25)

With Ie(l) denoting the set of non-tree edges i with l ∈ CT (i, e), we can now state the following
lemma:

Lemma 5.5
For fixed entering edge e and leaving edge l, the difference in Q(T) denoted by ∆Q(T, e, l) can be
computed by:

∆Q(T, e, l) =
∑

i∈Ie(f)

∆dT (i, e, l) (5.26)

5. Network–Generating Systems and Processes 96

e

i

CT (i; e)

CT (i; e)

PT (e)
PT (i)

(a)

l1

l2 l3

l4
-1

-3

-5

+3

i3

i1i2

i4

e
f5

f6

(b)

Fig. 5.15: (a) e is the entering edge, and the tree paths PT (e) and PT (i) of some other non-tree edge
i are indicated by the dotted arrows. Every non-tree edge i with CT (i, e) 6= ∅ will have to change its tree
path if the leaving edge is element of CT (i, e). The new tree path is built by removing from the old tree
path all edges from CT (i, e) and adding the complement of the circle, i.e., CT (i, e), to it. (b) Again, e
is the entering edge, and ij are edges that could be affected by choosing some of the possible leaving
edges li. The boxed numbers give the difference between the new and old tree distance. It follows that
for entering edge e, l2, l3, or l4 would yield the best optimization with a value of ∆Q(T, e, l) of −9.

∆(Q(T, e, l)) can be computed efficiently by first determining the set I(e) = ∪l∈PT (e)Ie(l) of all
edges i that are depending on at least one edge of CT (e) in their tree path. This can be done
reasonably efficiently if every tree edge l stores Ie(l) in a bit map. A bit map allows space– and
time–efficient set operations, e.g., conjunctions and disjunctions. With at most n sets Ie(l), the
set I(e) can be computed in O(nm). The tree path PT (i) of every non-tree edge i is also stored
as bits in a bit map. By simple OR−,XOR−, and AND-Operations all required sets CT (i, e),
CT (i, e), and ∆dT (i, e) can be computed in O(m) for a single non-tree edge i and in O(m2) for
all of them. The leaving edge is the edge f with minimal ∆Q(T, e, l), which can be computed in
O(nm) where ties are broken at random. If there is no leaving edge because all resulting trees T ′

would be worse, nothing will happen and the next entering edge e is chosen at random. After e
and l have been chosen in this way, some updates have to be made that are also computed very
efficiently by operations on the bit maps. These updates can then be computed in O(m2).

Lemma 5.6
A single local optimization step can be computed in O(m2).

Note however that there is a huge trade-off between memory efficiency and runtime efficiency. The
storage of all the bit maps requires O(m2) of space; if this is too much and the according bit maps
have to be computed ad hoc, this will add another factor of O(m) to the runtime.

A backbone is said to be locally optimized if no single optimization step with ∆Q(T) < 0 can
be found anymore. Note however that a locally optimized network is not necessarily globally
optimal. In Fig. 5.16 a spanning tree is shown that cannot be improved by one single step in

5. Network–Generating Systems and Processes 97

5

3

3

3 3

33

3

9

11

13

3

3

3

(a)

5

3

3

3 3

33

3

7

11

13

5

3

3

(b)

5

3

3

3 5

33

3

7

9

13

5

3

3

(c)

5

3

3

3 5

33

3

7

9

11

5

3

3

(d)

Fig. 5.16: (a) A spanning tree (solid red lines) in a 7×7 grid with Q(T) = 198. There is no single edge
that could enter the spanning tree to improve Q(T), but, as figures (b) and (c) show, there are spanning
trees with the same Q(T) that can subsequently build from the one in (a) such that from the one in (c)
there is a single edge that can enter the tree to improve Q(T) to 196. Entering edges are solid black and
leaving edges are dotted red.

the local improvement algorithm although a better spanning tree exists. With respect to the local
improvement algorithm described in 5.7, this spanning tree is thus a local minimum.

As we have seen above, a BFS tree is not always near to the optimal solution. In the following
we will thus introduce some heuristics that generate a promising spanning tree, to which the local
optimization algorithm can subsequently be applied.

5.7.1 Heuristics for Computing an Initial Backbone

The quality of spanning trees with respect to Q(T) can be very different, a fact that is shown in
Fig. 5.17. Since finding the spanning tree with minimal Q(T) is NP-hard, as stated above, we will

5. Network–Generating Systems and Processes 98

4

2

3
2 3

34
4

4

2
3

(a)

3

2

2
2 2

2

2

2

3

2

3

(b)

Fig. 5.17: The thick lines denote two different spanning trees T for the given graph. Numbers next to a
(dotted) non-tree edge denote the tree distance of this edge. The spanning tree in a) has a quality Q(T)
of 34 and the spanning tree in b) has a Q(T) of 25.

now show greedy algorithms that compute reasonable initial backbones that can subsequently be
improved by a local optimization heuristic.

To construct a backbone, the most simple idea is to use a BFS tree. Although we could show above
that this simple tree will not give a constant factor approximation of the optimal backbone, the
quality Q(T) of the resulting backbone is reasonably good compared to the above proposed quality
measure ΣG and the tree can be computed in O(m). We will introduce two other methods that
are computationally more involved, but yield much better backbones in practice. Both heuristics
grow a spanning tree S incrementally by first choosing the next vertex v to append to S and then
choosing the best edge to hook v into S. Both start with one vertex chosen at random. With S
the set of vertices already in the tree, let R denote the set of vertices v ∈ G \ S directly connected
to at least one vertex in S. The vertex to append next is the vertex with maximal degree of R,
where ties are broken in favor of the vertex with maximal number of neighbors in S; remaining ties
are then broken at random. The intuition behind this heuristic is that vertices that are appended
early to the growing backbone will influence the backbone’s structure most. Since a vertex with a
high degree will contribute a large sum of backbone distances to Q(T), these vertices should have
a large influence and thus be appended as early as possible. A trivial implementation searches
for the vertex to append in O(n) in every step, yielding a runtime of O(n2) for all steps. A more
sophisticated data structure that keeps vertices in R sorted in a kind of two-dimensional array of
lists, can reduce this runtime to O(n deg∗), where deg∗ is the maximal degree in the graph. For
very large real-world networks this is in most cases a significant improvement.

In general, the chosen vertex v will have more than one neighbor in S and its tree edge will connect
it to one of them. These neighbors are the possible hooks of v. Note that by choosing one of these
edges to be v’s tree edge, the tree distances of all the possible tree edges of v are determined. Thus,
the first variant, the minimized inner distance tree, will choose that hook that minimizes the tree
distances of all the other possible tree edges:

5. Network–Generating Systems and Processes 99

v

1

h
h

h

1

2

3

w

w

2

(a)

v

1

h
h

h

1

2

3

w

w

2

(b)

Fig. 5.18: a) Minimized Inner Distance Tree: Entering vertex v has three hooks h1, h2, h3. h2 minimizes
the sum of the tree distances of v’s edges to h1, h3 with a sum of 8, and thus h2 is h∗. b) Minimized
Entire Distance Tree: The tree distance of v’s edges to w1, w2 can be estimated by determining the
distance of the hooks to these neighbors. It follows that h3 has the best sum of distances to all others:
|P (h3, h1)| = 4, P (h3, h2)| = 3, |P (h3, w1)| = 5, |P (h3, w2)| = 1.

Minimized Inner Distance Tree Let S(v) denote the neighbors of the chosen vertex v in S, i.e.,
the hooks of v. Since only one of the edges incident to a hook can be a tree edge without inducing
a cycle in T , it is necessary to choose the one hook h∗ that minimizes the tree distances of all the
other edges to hooks. Thus, for every hook the distance to all other hooks is summed and the edge
to the hook with the minimal distance to all other hooks is chosen as new tree edge (Fig. 5.18(a)).

By holding an array D(T) of size n2 that keeps the distance dT (s, t) for all vertices s, t in S,
this computation can be done in O((deg∗)2). After the best hook h∗ has been chosen, this data
structure has to be updated by adding the distances dT (v, w) between the newly added vertex v
and all other vertices w in S to D(T). Since dT (v, w) = dT (h∗, w) + 1 for all w ∈ S, this can be
done in O(n). Thus, the entire runtime to construct a minimized inner distance tree is given by
O(n(deg∗)2 + n2).

Lemma 5.7
A minimized inner distance tree for some randomly chosen root vertex can be computed in
O(n(deg∗)2 + n2).

While this tree only regards those (inner) edges to other vertices in S, the next one tries to estimate
the tree distance of the other edges of v as well:

Minimized Entire Distance Tree Let again S(v) denote the neighbors of the chosen vertex v in
S, and N(v) denote the full neighborhood of v in G. For those edges of v that do not lead directly
to vertices in S, it is hard to estimate their tree distance: It could be that they will later choose v
as their hook to the growing tree and in this case an edge will not contribute to Q(T). Since it is
unlikely that all of them will use the edge to v as their tree edge, it would be good to choose a hook
h∗ such that all neighbors w of v have a short alternative path P ′(h∗, w) to v: A path P ′(h,w) is
considered as an alternative if it can be split into two paths, the first using only vertices of S, the
second—if necessary—only vertices of V \S. In this way, the currently known structure of the tree
is used as much as possible and the edges that are not yet known to be in the tree are only used
for the last bit to reach w (Fig. 5.18(b)). With this intuition, we will choose the hook h∗ ∈ S(v)

5. Network–Generating Systems and Processes 100

that minimizes the following sum:
∑

w∈N(v)

|P ′(h,w)| (5.27)

Note that the sum in Equ. 5.27 contains also the sum of the inner distances and thus the name of
the tree is justified.

This computation can be done by computing the distance of all vertices to every hook of v which can
be accomplished in O(m deg∗). It follows that a minimized entire distance tree can be computed
in O(nm deg∗).

Lemma 5.8
A minimized entire distance tree for some randomly chosen root can be computed in O(n deg∗m).

Graph BFS Minimized Minimized Optimized Σ(G)
Inner Entire

Distance Distance
Co–purchasing 31342± 316 21819± 57 20654± 24 17596± 28 12468
network 73± 11 [ms] 358± 34 [ms] 70± 0.3[s] 20min14s
n = 3437
m = 9671
Live Journal 29615± 1332 23156± 71 22058± 38 19588± 3 14774
n = 3763 65± 11[ms] 284± 19[ms] 100± 0.4[s] 22min12s
m = 11149
Co-Authorship 52896± 1447 52463± 222 49951± 98 34287± 47 14184
Network 131± 18 [ms] 480± 34[ms] 337± 0.6[s] 49min2s
n = 12357
m = 19448

Tab. 5.1: For each network, 10 instances of every kind of spanning tree were computed. Displayed is
the average Q(T), its deviation, and the average time and its deviation to compute the tree. Note that
the best unoptimized spanning trees already have a quality that is close to the lower bound given by Σ(G)
that can nonetheless be further reduced by the optimization. Furthermore, every one of those 10 instances
started at another, randomly chosen start vertex. The low deviation in Q(T) shows that the method gives
a stable Q(T), nearly independent of the choice of the start vertex. The experiments were conducted on
a Pentium 4 with 3.2 GHz and 2GB RAM.

Table 5.1 shows a comparison of Q(T) of all three trees for some real-world networks and that of
a spanning tree that results from the local optimization heuristic (s. 5.8.2 for a description of the
networks). It is clearly visible that the higher computational effort for minimized inner distance
and minimized entire distance trees results in much better backbones than the simple BFS tree and
come near to the lower bound given by Σ(G) (s. 5.4.1). However, the local optimization heuristic
can decrease Q(T) reasonably, even for the best starting tree. In the following we will show how
such a locally optimized tree can be used to visualize large networks.

5.8 Visualization of Large and Complex Networks with Heuristically Optimized

Backbones

At first glance it seems prohibitive to visualize large and complex networks. The idea to represent
these networks by suitable spanning trees and draw these trees instead of the whole graph, is a

5. Network–Generating Systems and Processes 101

well-known approach, found, e.g., in [50, 82, 106]. In most of these cases it was assumed that the
spanning tree was either given by the user or that the graph to draw was hierarchically organized
and thus a spanning tree could be easily and more or less unambiguously derived. Here we show
that an optimized backbone will also result in helpful visualizations of large networks depending, of
course, on their degree of locality and clusteredness. The idea is that a good backbone decomposes
the edges of a graph into a set of local edges that are likely to be within clusters and a set of
global edges that are likely to be between clusters. The decomposition into these sets has already
been proven useful for drawing power-law graphs where the decomposition is derived by solving
a network flow problem [12]. A simple idea for drawing a large graph is to compute a backbone
and draw it with a tree layout algorithm, ignoring all non-tree edges. In most cases, this does not
result in satisfying drawings. In our approach, non-tree edges will influence the order in which the
children of a tree vertex are sorted, depending on the length of these edges in the backbone. This
approach results in aesthetic drawings that reveal the large scale structure of the graph.

5.8.1 Using the Backbone for Computing a Layout

As indicated above, a good backbone will try to concentrate the vertices of any cluster on a small,
connected subtree. By doing so, the tree also indicates that edges with a high tree distance are more
likely to be inter-cluster edges. These properties of the backbone can be used for computing a layout
that co-locates the vertices that are supposedly in a dense part of the graph, and simultaneously
highlights the inter-connections between these dense parts.

To harness the backbone, our layout approach is based on a tree layout that is adapted towards the
needs of a full graph. The layout of the graph can be computed by a variation of the balloon tree
layout [50], resulting in a drawing which we will call a backbone balloon drawing. In the original
balloon drawing of a tree, every subtree is enclosed entirely in a circle that is positioned in a wedge
whose end-point is the parent vertex of this subtree. The radius of each circle is proportional to
the number of vertices in the subtree.

To adapt this tree layout towards the needs of a full graph, the basic idea is to use the backbone
and compute a balloon drawing for it and re-insert all non-tree edges as straight lines. To make
this drawing a good drawing for the whole graph, the only parameter left to change is the order
of the children of any vertex in the tree. Since all direct neighbors of any vertex in the tree are
positioned in a circle, the order of these children can be determined by a variation of the algorithm
for crossing reduction in circular layouts [27]. The original algorithm is composed of two phases:
In the first phase an initial ordering is heuristically determined. This is optimized by subsequent
rounds of local sifting, where each vertex can try to improve the number of crossings by changing
its position in the order computed so far. The application of this algorithm in a backbone balloon
drawing requires the following two modifications:

1. Every edge between the children of a vertex in the tree can not only cross with each other,
but also with the spokes, i.e., the edges from the father to its children. This changes the
computation of the resulting number of crossings slightly.

2. Let T (v) and T (w) denote the subtrees rooted at v and w, respectively, and let v and w be
children of the same vertex. If the number of edges between these subtrees is large, then v
and w should be close in the resulting order, which is not regarded in the original algorithm.

The second point can be dealt with by introducing additional edges between any two children v, w
whose subtrees are connected by edges. Additionally, all edges will be assigned weights that present

5. Network–Generating Systems and Processes 102

the number of edges between T (v) and T (w). The weight of a crossing between two edges is now
given by the sum of the weights of the crossing edges, and the optimization goal is to minimize the
sum of the weights of all crossings and not to minimize the number of crossings. The weights of
all the edges between any two children can be computed in O(nm). Every round of local sifting in
a given circle with at most deg∗ vertices can be computed in O((deg∗)2) as shown in [27]. Since
there are at most n circles in the drawing, this sums to O(n(deg∗)2), which is the largest factor in
computing the backbone balloon drawing.

5.8.2 Experiments

We have applied the above presented variant of the balloon layout algorithm to different types of
networks, shown in detail in [148]. Here, we show exemplarily one co–purchasing network, starting
at one of the ‘Harry Potter’ books ([181]; Figs. 5.20, 5.21, 5.22). The balloon tree drawing shows
discernible clusters connected by long-range edges, that are even more pronounced in the drawing
that is based on an optimized backbone with minimized entire distance. This visual impression
is supported by the fact that the force-directed drawing has the highest (normalized) total edge
length of 434, 813, the one based on the unoptimized backbone has a total edge length of 321, 292,
and the one based on the optimized backbone has a total edge length of 220, 8579.

To show the quality of the different backbone heuristics and the optional optimization step, we
have conducted experiments on this Amazon recommendation network and two other networks,
shown in Table 5.1. For the creation of the Live Journal network a crawl was started at some
participant of www.livejournal.com, following the links to designated friends unto depth 3. The
co-authorship network is described in [188]. Fig. 5.19 gives a showcase for the improvements of
Q(T) by the optimization heuristic. It is clearly visible that the time spent in this step is worth
the effort.

5.9 Summary

In this chapter we have introduced the notion of network–generating systems and argued why we
think that it is important to know the real process that built a network. Of course, often we
do not have any data on the evolution of a network, especially in biological networks, nor any
data besides the information of who is connected to whom, i.e., nothing else but the adjacency
matrix. Thus, we considered the question of whether we can detect some processes in the resulting
adjacency matrix. As we had already argued in chapter 4, locality seems to be hard (and we
conjecture, impossible) to detect by looking only at the adjacency matrix. But in this chapter
we have shown that it is at least possible to bound the number of edges created by a random
graph process in any given network by a new technique. This technique introduced the notion
of tree distance distributions and led to the observation that real–world networks often have an
astonishingly steep tree distance distribution. It turned out that a steep tree distance distribution—
and the low sum of tree distances resulting from it—is important for efficient algorithms in different
applications. We thus think that this newly found characterization is one of the first real–world
network structures that is interesting for theoretical computer science. So far, the process that
leads to a steep tree distance distribution is unclear: it is intuitive that it arises in all networks
whose network–generating process prefers local edges, but—as with the clustering coefficient (4.2.4)
and the (k, l)-locality definition of Chung an Lu (4.2.3)—there is no strict correlation between the

9 Note that a printer’s resolution is not as good as that of a screen. The drawings look a bit scrambled on paper;
the screen version is much more readable.

5. Network–Generating Systems and Processes 103

4500

5000

5500

6000

6500

7000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

BFS
Inner Distance
Entire Distance

of optimization steps

Q(T)

Fig. 5.19: For a smaller Amazon recommendation network with n = 852 and m = 4220, one BFS,
one minimized inner distance and one minimized entire distance tree were computed and improved by the
optimization heuristic until no further improvements could be found, i.e., a local minimum is reached.
The trees start and end with the following Q(T)’s: 6572/4641 (BFS), 5385/4734 (Inner), and 5085/4662
(Entire). Note that Σ(G) is 3822.

two concepts. Another process that could lead to a steep tree distance distribution takes place
in systems where the vertices are positioned in a hierarchy, and edges are less likely the higher
the (hierarchical) distance between them, but so far we have not analyzed whether and how the
tree distance distribution and this model correlate. In summary, we think that the tree distance
distribution in real–world networks is a helpful characterization of real–world networks that could
lead to interesting and efficient algorithms in many applications, and that gives rise to many other
questions, e.g., its correlation to the modularity of a graph [93], or the minimal length of an MCB
in graphs with a tree distance distribution described by f(k) ∝ k−j for some constant j.

5. Network–Generating Systems and Processes 104

Fig. 5.20: A layout based on a force-directed approach, as implemented by the graph drawing library
yfiles [110]. The normalized total edge length of this drawing is 434, 813. Red edges indicate the spanning
tree that was used to compute the embedding.

5. Network–Generating Systems and Processes 105

Fig. 5.21: A balloon layout drawing based on a simple, unoptimized backbone with minimized entire
distance. The normalized total edge length of this drawing is 321292.

5. Network–Generating Systems and Processes 106

Fig. 5.22: A balloon layout drawing based on an optimized backbone with minimized entire distance.
The normalized total edge length of this drawing is 220857. The time to compute this layout was on
average around 20 minutes (averaged over 5 drawings).

6. THE PRINCIPLE OF LOCALITY IN THE EVOLUTION OF COMPLEX

NETWORKS

As indicated in chapter 4, one interesting aspect of the small–world phenomenon is that the
resulting network structure is small and at the same time cost–effective —under the assumption
that the cost of building and maintaining an edge is at least weakly correlated with the distance
it spans—while no central authority is required to organize it. On the other hand, the network
will only be globally small if every vertex behaves in the same way—it does not help if only some
of the vertices have one or two random edges. We can additionally safely assume that no single
vertex in a social network would alone be willing to pay for a lot of long edges, even though this
behavior would also result in a small network. Rather, it is intuitive that in a social network
any network structure must be not only globally but also locally in a good cost–value ratio. This
implies that every vertex must directly benefit from any edge it builds, and furthermore that it
might remove edges that have no direct benefit for it. We conclude that social networks are built in
a self-organized fashion by selfish and also myopic agents that will favor a short–term benefit over
a long–term investment. Despite those rather severe restrictions on network generation, there seem
to be some structural patterns that are stable in such a system, such as the already mentioned
ubiquitous small–world effect and the scale–free degree distribution seen in almost any network
[80, 8, 72, 46, 116, 176]. These examples show that it is nonetheless possible that a system of selfish
and myopic agents builds and stabilizes a network structure that is determined by the behavior of
all agents together.

The question is thus: If locality is the main building principle in a dynamic network, what kind of
global network structures can be built by the collective behavior of selfish and myopic agents that
will only accept local improvements? Vicsek describes collective behavior in the following way:

[Synchronization phenomena] happen in systems consisting of many similar entities
interacting in a relatively well-defined manner. These interactions can be simple ...
or more complex ... and can occur between neighbours in space or in an underlying
network. Under some conditions, transitions can occur during which the objects adopt
a pattern of behaviour almost completely determined by the collective effects of the
other objects in the system. [234]

We are interested in this latter phenomenon: a pattern of behavior of otherwise independent entities
that leads to a globally synchronized—in the sense of globally functional—structure determined
only by the interactions and feedback between the entities. The goal here is to find out how the
principles that govern the evolution of real-world networks can be transformed and adapted to the
needs of technical communication networks, i.e., our focus is on finding interaction and feedback
mechanisms that control a certain global network structure such that every single entity in the
system has an incentive to use this mechanism.

In this chapter we will provide some starting points to answer the question of how to build local
rules to guarantee a desired global network structure. In 6.1, we will start with a general overview

6. The Principle of Locality in the Evolution of Complex Networks 108

of how dynamic real-world networks can be observed and modeled, and how these models can then
be analyzed. We then proceed by defining the terms dynamic and evolutionary network model in
6.2 to differentiate among the different modeling approaches. As mentioned above, we are most
interested in those networks in which single vertices are modeled as entities able to decide which
edges to build and which to delete in a decentralized manner. We will first introduce a general
framework for this kind of dynamic networks in 6.31, and then show by some examples how carefully
the changing rules have to be designed to assure that the network will evolve efficiently towards a
desired structure in 6.4, 6.5, and 6.62. We start with a discussion of how to deduce a network model
from a real-world dynamic network and review some methods to deduce the long–time behavior of
these models, i.e., the attractor of the system.

6.1 Observing, Modeling, and Analyzing Dynamic Networks

We define a real–world network to be a dynamic network if it has a continuous identity through
history even though its adjacency matrix changes over time because of the addition and deletion
of edges and vertices. With this definition, a peer-to-peer network, e.g., gnutella or hyperchord,
or the social network of a village is considered a dynamic network although its actual members
change all the time due to entry events like logins (or birth, respectively,) and leaving events, e.g.,
logouts (deaths) of the users (inhabitants) since these networks show a continuous history and a
continuous purpose and means of network generation.

Dynamic changes in a network’s structure can be depicted as the trajectory of a point in the space
of all possible graphs, as sketched in Fig. 6.1. It is helpful to imagine this space of all possible
graphs as a meta-graph G(G) where any two possible graphs that differ by exactly one vertex or one
edge are connected by an edge. The dynamic of any network is then modeled as a path through the
meta-graph of all possible graphs. It is intuitive that two graphs that differ by only one element
will share many structural properties which implies that graphs that are within a short distance in
the meta-graph G(G) constitute groups with the same set of structural properties. In Fig. 6.1 we
have colored a two-dimensional sketch of G(G) to indicate that the graphs in a given region have
similar structural properties, for example, a small maximal or average distance, or a tendency of
the vertices to cluster. If the trajectory homes in on a set of graphs with a common structural
property and does not ever leave it afterwards, we will say that this part of the meta-graph is an
attractor for the dynamic network, and we will call the set of structural properties common to all
the graphs in this attractor the stable network structure.

If a dynamic network is modeled by a path in G(G) we are interested in the following questions:

1. Is there an attractor in the meta-graph and if so, what are its structural properties?

2. What is the likely path to the attractor?

3. How long will it expectedly take to get to the attractor in dependence of the starting point?

6.1.1 From Real–World Networks to Appropriate Network Models

Of course, the answers to these questions depend on the changing rules that govern the path of
the dynamic network through the meta-graph. There are mainly two ways in which the changing
rules and the resulting stable network structures of a given dynamic network are discovered.

1 This part of the work was conducted with Michael Kaufmann and has been published in [142, 145], where it
won the ’Best Paper in Track award’.

2 This part of the work was conducted with Karin Zimmermann.

6. The Principle of Locality in the Evolution of Complex Networks 109

Fig. 6.1: The history of a dynamic network can be depicted as a trajectory through the space of all
possible networks where two networks are connected if they differ in only one element. Colors indicate
schematically groups of networks with similar structural properties.

1. The first approach studies different real-world networks and searches for common structural
properties, as it has been done, e.g., in the analysis of the small-world phenomenon [242],
scale-free degree distributions [21], and the occurrence of hierarchical clustering [201] or
assortativity in real–world networks [177]. The motivation behind this approach is that when
a structural property emerges in different networks, it seems to be an important feature of
the attractors of different dynamic systems. After a common structural property has been
found, different changing rules are then explored to determine whether they will lead to an
attractor which has the structural property. This approach is an a posteriori analysis, a kind
of reverse engineering approach. For this approach methods mainly from (social) network
analysis have been used by determining, e.g., vertex centrality distributions [113, 132, 133]
like the degree [242] or betweenness centrality3 distribution [95], or the distribution of certain
subgraphs [168]. A detailed overview of these methods can be found in [41, 237].

2. The second approach studies a set of subsequent static snapshots of the same network and
tries to discover how changes between snapshots can be best described, e.g., whether the
network preferentially changes by building relationships between vertices that are already
neighbors of their neighbors [216, 217, 218], i.e., whether it prefers to build local edges. After
some statistical relevant changing rule has been found, this can be modeled and the model
can subsequently be analyzed to determine its attractor and its structural properties.

In summary, whereas the first approach knows the result and searches for the process that will
produce it, the second approach knows the process and tries to determine the result. Of course, it
has also to be shown in the first approach that the proposed process will actually reach and stay
in the attractor.

3 Sometimes also called the load. The classic betweenness centrality of a vertex measures the sum of the fractions
of shortest paths between all possible pairs of vertices that contain v. Note that sometimes a slightly different
definition is used under the same term [95].

6. The Principle of Locality in the Evolution of Complex Networks 110

When the changing rule is known or guessed, there are basically three different types of network
models: static, semi-dynamic, and dynamic network models that will be discussed in the following.

6.1.2 Static, Semi–Dynamic, and Dynamic Network Models

A static network model is one where vertices and edges are created once and not changed thereafter.
Many classical graph families such as grids, hypercubes, and random graphs belong to this type
of model. A semi-dynamic network model allows for a finite number of changes in a basic graph
topology. Many of the network models that were proposed to explain the emergence of real-world
network structures belong to this class of semi-dynamic network models, the most prominent
being the small–world network model by Watts and Strogatz, since it only allows at most one
rewiring event per edge. But other network models also belong to this class such as the preferential
attachment model by Barabási and Albert where every new vertex adds exactly m new edges to the
growing network that are not changed thereafter. This network model shows a scale-free degree
distribution as shown by [5] and was subsequently varied, e.g., by introducing a fitness to the
vertices [31], or assigning weights to the edges [255]. Another member of the class of semi-dynamic
network models is the modular network model by Ravasz et al. that starts with a small graph
structure that is multiplied in every time step, connecting the resulting subgraphs by a special
schema to build a larger one [201]. The resulting network shows the same clustering coefficient
and dependency C(k) of the average clustering coefficient of vertices with degree k as metabolic
networks. Of course, semi-dynamic network models are most suitable to model those networks
that are semi-dynamic themselves. For example, citation graphs [60]4 and the corresponding co-
authorship networks [176] described in the last chapter belong to this class. Naturally, an edge, once
acquired, will stay forever in these networks and thus they can be considered to be semi-dynamic.

There are fewer fully dynamic network models since these are often hard to analyze. In a fully
dynamic network model new vertices can attach to the network and old vertices can be removed
from it, and edges are rewired, newly built, or deleted. In 2000, Albert and Barabási added the
possibility of deleting or adding new edges and vertices to their preferential attachment model
and were able to show that this fully dynamic network model still produces scale-free degree
distributions, but with more variation in the exponent γ of the distribution [5, 4]. Another fully
dynamic network model for evolving social networks was discussed by Jin et al. [117]. Very
interesting evolutionary network models have been proposed by Bornholdt and various co-authors,
some based on game-theoretic ideas [70] and many based on genetic algorithms [59, 71, 39, 38, 40].
Both approaches give rise to a set of well-known analytical methods, and thus we will shortly
sketch the general idea behind game theoretic models and genetic algorithms here.

1. Game theoretic–based network modeling: In a game theoretic network model, each
vertex represents an agent that is allowed to build edges to other vertices. Every possible
set of edges that an agent can build is called a strategy. After every agent has chosen its
edge set, they are paid a benefit that is determined by the resulting network’s structure
and described by the so-called utility function. In a game theoretic setting, every agent is
assumed to be rational, and to have total knowledge of the utility function of every other
agent. In this model every agent tries to maximize its benefit regardless of what strategies
the other agents choose. It is often assumed that the agents will choose their strategy such
that no agent can benefit from choosing another strategy given that the other agents stick
with their strategy, and a set of strategies with this property is called an equilibrium [186].

4 In a citation graph, publications are represented by vertices and two vertices are connected if one of the
corresponding publications cites the other.

6. The Principle of Locality in the Evolution of Complex Networks 111

Note that there are also evolutionary game theoretic models in which the agents play more
than one game and are allowed to change their strategy as a result of the games played so far
[244, 92]. Network creation or network formation games have been independently introduced
by different groups, e.g., Myerson [171], Fabrikant et al. [79], and Skyrims and Pemantle
[214], and varied by numerous others, e.g., in a dynamic setting by [238] and an asymmetric,
non-cooperative setting by [15].

2. Network modeling based on genetic algorithms: Genetic algorithms were introduced
in the 1960s by John Holland [107] to find good solutions in a large search space, and were
firmly based on the idea of the optimization of a population of solutions by a selecting entity5.
Holland’s approach was a quite fine-grained copy of what happens in biological evolution, e.g.,
solutions were encoded as chromosomes with different genes encoding structural properties
of the solutions; possible mutation mechanisms even modeled cross-over events in biological
organisms where pairs of chromosomes exchange parts of their information. This first model
is a bit too fine-grained for the evolution of networks, since a reasonable simulation of a cross-
over event for networks is difficult to imagine. In general, an evolutionary model based on
genetic algorithms will thus simply consist of a set of graphs, called a population, and in most
cases the network structure itself constitutes the genetic material, without any differentiation
of chromosomes and genes. Different kinds of mutations can be applied to the population
that alter the structure of the networks and thereby change their fitness. Subsequently, the
networks are evaluated by some fitness function, and the most fit members of the population
are most likely to produce offspring, thereby stabilizing functional network structures.

We have sketched both approaches here since the general model of the evolution of so-called S3

networks proposed in 6.3 integrates these ideas to make them amenable in the design of decentrally
organized technical communication networks.

Process– vs. Result–Driven Network Modeling

Even if semi-dynamic network models are able to produce networks with those structural proper-
ties seen in a real–world network, such as a specified clustering coefficient or degree distribution,
sometimes they do not model the process by which the structure is likely built in the system that
generated the network. This is especially obvious in the model given by Ravasz et al. sketched
above [201]. Their model results in a network that shares some structural properties with metabolic
networks, but the process, namely the multiplying of the whole graph in each time step, is highly
unlikely to be the biologically correct one. If this process models the evolution of real metabolic net-
works, this implies that a part of the genetic information encoding the genes involved in metabolism
is multiplied. There are some plants that are known to have multiple sets of genetic information
(polyploid plants), but any deviation from the normal (haploid) number of chromosomes (i.e., ane-
uploidy) is lethal for higher mammals like humans [105]. In summary, the model of Ravasz et al.
has helped us to understand how certain properties like a C(k) distribution proportional to k−1

could emerge in a dynamic network, but it is unlikely that the proposed mechanism is the one used
in the evolution of real metabolic networks. The point that a process resulting in the ’correct’
stable network structure has additionally to be able to model the likely way in which the dynamic

5 As sketched by Melanie Mitchell [169] there were many scientists that used ideas from evolutionary theory to
solve technical problems, e.g., Rechenberg, who was the first to use something he called ”evolution strategies”
for optimizing the design of different devices [202], and in 1966, Fogel, Owens, and Walsh, who described a
creative technique to build new computer programs, called ”evolutionary programming” [86]. Weicker states
that even earlier, Friedman had used ideas from evolution theory in 1958, followed by first steps in evolutionary
programming by Friedberg and Friedberg et al. in 1959 ([245], p. 56-58).

6. The Principle of Locality in the Evolution of Complex Networks 112

network under observation produces it, has also been stressed by other authors, e.g., in the case
of social network formation [117, 214] where a constant rewiring of edges seems to be necessary to
model short-lived acquaintanceships, as Jin et al. point out:

New vertices are of course added to social networks all the time However, the
timescale on which people make and break social connections, which can be as short
as hours or days, is much shorter than the timescale on which vertices join or leave the
network, which is typically some years. [117]

This rules out static or semi–dynamic network models for social networks.

Also in the case of (scale–free) citation graphs it was argued that the likely process of their gen-
eration is not captured by the classic semi-dynamic network models producing scale–free graphs.
For these networks Klemm and Egúıluz suggested assigning vertices a decreasing activitiy with
age since it was shown that the expected number of citations of a given article per year decreases
strongly 3 years after its publication [129].

Interestingly, it can also happen that the assumed network generating process will not lead to
network models that capture the structure of the real-world network. If there is another network
model that results in more similar networks, this network model can supply hints about the real
process, as happened in the modeling of the Internet. In the early years, mainly hierarchical models
based on the intuition that new servers are added to the Internet on different levels of organization
were proposed. However, it turned out that networks from the preferential attachment model
resemble the Internet much more by various measures—implying that the ”accepted wisdom of the
strong influence of the hierarchical structure” on its network generation was wrong [229].

In summary, semi-dynamic networks mainly model the large-scale addition of vertices to a network,
but not the small-scale rearrangements in many evolving networks. If these small–scale rearrange-
ments dominate the network structure of a real–world network, modeling them with a dynamic
network model should be preferred over modeling them with a semi-dynamic one. In general we
state that a reasonable model for the evolution of a real–world network does not only have to
produce a network with the same structural properties, but also has to do so by a process that is
possible in the network generating system that produced the real–world network.

6.1.3 Finding Attractors of Dynamic Network Models

Having discussed the pros and cons of different modeling approaches, we will briefly sketch the
wide variety of different analytical methods that try to determine the attractor of a network model,
i.e., methods that, given a network model, determine what kind of networks it will produce.

1. Albert and Barabási have applied methods from statistical mechanics to determine that their
preferential attachment model results in networks with a scale-free degree distribution [21, 5];

2. Farkas et al. used methods from linear algebra (and numerical simulations) to determine the
so-called spectrum6 of random graphs, small-worlds and scale-free graphs for limn→∞ [81];

3. Newman and Watts used renormalization group analysis and scaling theory to determine the
expected average distance in small-worlds [175, 174];

6 The spectrum of a graph is given by the eigenvalues of its adjacency matrix.

6. The Principle of Locality in the Evolution of Complex Networks 113

4. Newman, Strogatz, and Watts used generating functions to analyze various properties of
random networks with a given degree sequence, e.g., the expected clustering coefficient and
average distance [182].

5. Stochastic models used in social network analysis try to fit stochastic models governed by a
minimum of parameters to the dynamic network data as closely as possible [216, 217, 217,
223]. If the parameters are in a narrow range these can be interpreted to mirror stable
network structures.

6. Another approach is to analyze simpler models first. For general dynamic vertex attachment
models where in each time step one vertex is added with m edges according to some attach-
ment rule (e.g., preferential attachment), simpler so-called (random) recursive tree models
have been developed where the new vertex builds only one edge, and thus the growing graph
constitutes a tree. On this method a rich body of theories has been based, mainly for random
attachment, but also applicable to other attachment rules, e.g., [164, 170, 228, 114, 137].

7. Often, a dynamic network model can be viewed as a discrete Markov process in the meta-
graph of all possible graphs. A discrete Markov process is a stochastic process in a state space
with defined transition probabilities, i.e., Pi(X,Y) describes the probability that the system
is in state X in time step i and in state Y in time step i+ 1. In the case of a dynamic real–
world network model, the state space is given by the meta-graph of all possible graphs G(G),
and for any given changing rule, the transition probabilities can often be easily determined.
Markov theory can then be used to determine, e.g., attractors (here called absorbing states)
or—if certain conditions are met—the stationary probability distribution that determines
which states will be occupied and expectedly how often for lim t→∞ [42, 163, 183].

8. In a game theoretic model, the question for stable network structures is mainly assumed to
be equal to the set of Nash and other types of equilibria, i.e., those network structures in
which no single agent can improve its gain by switching to another strategy [186, 244].

Fig. 6.2 summarizes this perspective on the observation, modeling, and analysis of a dynamic
network: A dynamic network follows a trajectory through G(G) , guided by a set of changing rules.
By collecting static snapshots of the network along this trajectory and analyzing their structural
properties, stochastic models can be built to deduce the changing rules of the system. These
rules can then be incorporated into a network model which is subsequently analyzed by different
mathematical methods as summarized above.

So far, we have used the term dynamic network, but one can often find the term evolving network or
evolution of networks. In the following we want to discuss when a dynamic network might be called
an evolving network, and then develop a general framework for evolutionary network models. We
will argue that evolutionary network models might help to develop decentrally organized networks
with a globally desired network structure, and show with some examples how important it is to
design changing rules for this purpose carefully.

6.2 Evolution of Complex Networks

The term evolution of networks has been used repeatedly for any kind of network that shows a
change in its adjacency matrix due to the addition or deletion of vertices or edges, e.g., [5, 255]. But
the simple change of the adjacency matrix would rather allow for the term dynamics of networks or
the characterization as dynamic networks. The question is thus why and when the term evolution

6. The Principle of Locality in the Evolution of Complex Networks 114

1

2
3 4

5

6

Equilibrium
Analysis

Taking
empirical

data

Analysis of the Process
1) Statistical Mechanics
2) Markovian Models

Computer
Simulation

Fig. 6.2: Summary of the target of different analysis methods: Along the trajectory (black) of a dynamic
real-world network, data can be collected and analyzed by stochastic models to determine the driving forces
and stable structural properties. These can then be transformed into a dynamic graph model. To analyze
the long–run behavior of the model, an equilibrium analysis can be made. To understand the (likely)
trajectory that the evolving graph will take, methods from statistical mechanics or Markov chain models
can be applied. Finally, a computer simulation of the model (gray trajectory) can be made to compare
the trajectory of the model with a series of real data .

6. The Principle of Locality in the Evolution of Complex Networks 115

of networks is appropriate. To our knowledge, this rather hermeneutic discussion has not been
done so far, but we think that such a discussion will reveal implicit assumptions we have on the
dynamics of networks that help us to build better models for their dynamics. As Dorogovtsev and
Mendes point out in their book ”Evolution of Networks”7:

However, the most important natural and artificial networks have a specific architec-
ture (...). Their state is far from equilibrium and their structure cannot be understood
without insight into the principles of their evolution. ([69], p. v)

If we need to know about their evolution, what exactly is the evolution of networks? In the
following we will first determine what kinds of systems are said to be evolving in general and then
try to adapt the concept specifically for network generating systems.

6.2.1 Evolution of Systems

Of course, the term evolution itself is mainly used to describe the development of biological or-
ganisms, and is thus not easy to translate to the changes of a network, but on the other hand the
principles on which evolutionary theory was based by Darwin [58] can and have been translated
to other problems by, e.g., genetic algorithms, as sketched above.

Abstracting from these approaches, a system can be said to evolve if it is dynamic, i.e., changing
its characteristics, according to the following basic principles:

1. The system generates offspring with mainly the same characteristics as itself (Inheritance).

2. The offspring show variations of the parental characteristics (Mutation).

3. The system’s ability to survive the selection is based on its characteristics (Fitness).

4. There is a selection mechanism based on the fitness of the network (Selection).

For every evolving system there is a virtual space consisting of all possible system states. If there
is a fitness function that assigns a value to each of the possible states, this space is also called the
fitness landscape of the system [169].

For biological networks like protein-protein interaction networks [199, 219, 232], or metabolic net-
works [116, 201] it is quite clear that they have evolved within this framework. Both types of
networks are part of an organism (the system) and their characteristics are encoded in the genetic
code of this organism. Thus, they can be inherited by the offspring of the organism whereby they
may suffer some mutation. Of course, the quality of these networks does not totally determine
the fitness of the organism, but it does at least influence it. One simple example of the influ-
ence that metabolism has on the fitness of an organism is an enzyme called Gulonolactonoxidase
that catalyzes the synthesis of vitamin C. This enzyme was lost in humans and guinea pigs, mak-
ing vitamin C an essential nutrient for these organisms to survive and reducing fitness in those
environments where vitamin C is scarce [162].

While the evolution of biological networks can thus be modeled meaningfully as a series of mutation
and selection, evolution of other networks such as the social network in a city or the network of
streets in a country is not determined by selection since there is no alternative network with which
these singular networks have to compete. In analogy to the above given properties of an evolving
system we will show why it is still meaningful to speak of the evolution of these networks:

7 Interestingly, the authors do not discuss their usage of the term evolution as opposed to dynamic.

6. The Principle of Locality in the Evolution of Complex Networks 116

1. Let Gi and Gi+1 describe the same network at two subsequent time steps8. As long as edges
are costly to build and delete we can assume that only a few changes have been made to the
adjacency matrix of Gi to result in Gi+1. Thus, most of the structural properties of Gi will
be preserved in Gi+1 (Inheritance).

2. The changes can be seen as a kind of mutation.

3. Under the assumption that edges are costly to build, to maintain, and to delete, it is obvious
that no real network is built without the wish to use it for something, e.g., a means of
transport, information exchange, or creation of knowledge or wealth. For example, in recent
years larger and larger teams and collaborative networks in science have been built to achieve
new insights, and seemingly they were built efficient enough to do so [19]. In summary,
networks are built with a purpose and their structural properties determine their fitness for
the given purpose.

4. Depending on the fitness of a given network it can be selected in two different meanings of
the word. If the network is used by intelligent agents they can decide whether they want
to use it or not. For example, every country has different transportation networks: the
network of streets and highways, train networks, and airplane routes. A traveler will make
his choice among them depending on the distance, the maximal amount of travel time he
wants to spend, money, and the structural properties of these networks. On a second level,
the participants or the owner of a network can decide whether they want to leave the network
structure as it is in the next time step or whether they want to change it because they are
unsatisfied with the performance of the network. Thus on the first level, if there are different
singular networks with the same purpose (transport, communication, etc.), agents can decide
which one to use. On the second level, agents can decide to change the network’s structure
according to the fitness of the current structure.

This latter aspect gives rise to an interesting feedback mechanism that is typical for complex
adaptive systems [233] and can either make it very difficult to control them or give us a tool by
which the system can be made to evolve towards an attractor, a stationary state as in chaotic
systems [226].

Note that a very detailed modeling of evolutionary processes that incorporates the ideas of chro-
mosomes, cross-over, or genes as proposed in early genetic algorithms by Holland [107, 169] is not
necessary to call a model an evolutionary model. Interestingly, the life–long aim of paleontologist
Stephen Jay Gould was to decipher the ”Structure of Evolutionary Theory” [98], and he comes
to the conclusion that natural selection (together with heredity, variation, and overproduction of
offspring) is just the sheer mechanism of evolution, but that a theory must contain, explain, and
be based on the following three principles in order to be called an evolutionary theory (at least for
the advance of biological organisms):

1. Agency: Natural selection aims at the level of organisms.

2. Efficacy: Natural selection is able to create new solutions to a problem.

3. Scope: Natural selection is able to create every new solution in organisms.

In order to design an evolutionary model of complex networks it seems at first glance that there
are two different agencies for selection: One on the level of the whole network and one on the level

8 The length of the time interval between these snapshots has to be determined meaningfully in every network
or is given by the data at hand.

6. The Principle of Locality in the Evolution of Complex Networks 117

of single elements of the network. As depicted above, the first type of selection occurs if there is
more than one network for the same purpose, allowing people to choose which one to take. The
second type of selection occurs whenever the structure of a network needs revision. If an edge
contributes to the functionality of a network, it is likely to stay in the network; if a new edge
would improve the functionality of the network, it is likely to be built. In essence, the first type of
selection will finally also lead to a selection of the elements of the network: If a transport network
is not used by the customers, the owner of the network will select those edges to build or to destroy
that optimize the functionality. Thus, in order to model the evolution of a complex network, we
can disregard the first type of selection and concentrate on the second. Furthermore, we will only
concentrate on those models where the central mechanism of selection is able to create new—and
all new—structures of the network.

6.2.2 Dynamic vs. Evolutionary Network Models

Summarizing the ideas sketched above on the evolution of biological organisms, we will denote as
a dynamic network every network that changes its adjacency matrix over time. A network is said
to evolve if the building and deleting of edges is costly and if, therefore, we can assume that the
network is built with a purpose. From this it follows that the network’s structure at least partly
determines the fitness of the network with respect to the purpose. Furthermore there must be a
selection mechanism that makes it more probable that a functional network structure is stabilized
and that a less successful network structure is changed in a way that explores the set of all possible
graphs for a better solution. With this definition, the small-world model and the preferential
attachment model are definitely dynamic network models, but they are not evolutionary network
models. The ’purpose’, so to speak, of the small–world model is to build small networks. But if the
first rewiring steps fail to build a small network by chance, there is no mechanism to rewire these
edges again to build a smaller network in a second try. Similarly with the preferential attachment
model, where the ’purpose’ can be described as building a scale-free degree distribution. But if the
network fails to build one there is no mechanism that allows for a rewiring and subsequent selection
of those rewiring steps that lead the network towards a more scale-free degree distribution.

Why should one be interested in an evolutionary network model in addition to a pure dynamic
network model? The main difference between these types of network models is the following: in
a dynamic network model we aim for a certain structure and try to find a changing rule that will
result in this network structure. To stay with the picture of the meta-graph G(G): A dynamic
network model chooses a narrow trajectory through the meta-graph such that the attractor of this
model shows the desired structural property. In such a model, no selection mechanism is needed
to guide the trajectory of the system since the changing rule will most likely only explore a small
part of the possible search space, as in the small–world model by Watts and Strogatz where the
rewiring mechanism results in a small network with very high probability and maintains the high
clustering coefficient with high probability for an appropriately chosen rewiring probability prew

[242].

In an evolutionary network model, we aim for a global structural property and allow the
network to try every solution it can find in G(G) , i.e., for a small–world model the model would fix
a wanted average clustering coefficient and a wanted average distance. As long as these criteria are
not met, the agents would apply a changing rule that changes the network’s current structure until
they have concertedly achieved a satisfying network structure. Thus, the second type of model is
not restricted to a certain part of the fitness landscape, and here the changing rule can be creative
in finding its own solution to maximize the fitness of the network. Furthermore, depending on the
robustness of the changing rule, a self-organized network developed by an evolutionary mechanism

6. The Principle of Locality in the Evolution of Complex Networks 118

implemented in the agents can be hoped to react flexibly to changed environmental properties.
Suppose for example that external events destroy a part of the network. Then, an evolutionary
network model allows for a rewiring of the structure to deal with the new situation (we will show
such an example in 6.6). Of course, to make these models useful in a technical network, it is still
required that the changing rule is designed such that likely solutions can be easily found by it, as
we will show later.

6.2.3 Evolutionary Network Models for Selfish Agents

In this chapter we are especially interested in the evolution of those networks where each of the
vertices represents an agent that can decide for itself which edges to build and which to delete,
similar to the main assumptions made in game theory as sketched above. It is reasonable that
any agent that has to invest in the building or deletion of an edge will only do so if there is an
immediate return of interest due to this change, as stated by Fabrikant et al. for the emergence of
the Internet’s structure:

The Internet is the first computational artifact that was not designed by one eco-
nomic agent, but emerged from the distributed, uncoordinated, spontaneous interaction
(and selfish pursuits) of many. [79]

On the other hand, every agent that wants to use such a decentrally organized network will benefit
from it only if its global structure is functional. It can be shown that the behavior of processes on
different kinds of network structures changes dramatically, e.g., the cascading behavior of failures
in power grids modeled as small-worlds [174, 240], the spreading of diseases [192], or navigation
and routing [125, 126, 108]. One important finding concerned scale-free networks, i.e., networks
dominated by vertices with a small degree, that also containing some high degree vertices, so-
called hubs. It was shown that a scale-free network is very stable against random failures and at
the same time very vulnerable to directed attacks on the high degree vertices [6]. Thus, for many
technical communication networks that have to be decentrally organized for various reasons, it is
an interesting task to develop an evolutionary network model that obeys the fact that each change
in the network has to bear a benefit for those vertices involved in the change and simultaneously
results in a globally functional network such that the overall benefit to the vertices in the network
is satisfactory.

In the next section we will introduce a generalized evolutionary network model for these kinds of
decentrally organized networks, and show some examples of how efficient changing rules can be
designed to guide the evolving network’s trajectory to a region of the meta-graph with a desired
stable network structure.

6.3 A Generalized Evolutionary Network Model for Singular Networks

In this section we will develop an evolutionary network model for so-called S3 networks that are
singular, selfish, and self-organized networks. A network is called singular if at every timestep there
is only one network that is built directly from the one in the time step before. A singular network is
not evaluated by some entity from outside the network but by the vertices within the network, that
are then able to change parts of the network as a result of this evaluation. Thus, the network’s
topology evolves in a decentralized and self-organized fashion. As examples of the evolution of
this kind of singular and self-organized networks we want to discuss briefly the evolution of the

6. The Principle of Locality in the Evolution of Complex Networks 119

network of streets and highways and the evolution of the global social network in which all humans
participate: Singular networks are built between rational entities, called agents and these entities
are able to evaluate the network’s current performance with respect to their own position in the
network, but they are not able to evaluate the global performance of the network. In the case of
social networks a person might evaluate her position in the network by how much information she
gets from her social environment, while the network of streets and highways might be evaluated
from each of the connected cities with respect to the average time it takes to get to any other
city. The consequence of such an evaluation process is that vertices unsatisfied with the network’s
current topology, i.e., the part that is captured by their egocentric evaluation method, will try
to adapt the network to improve their situation, using some changing rule. In our examples this
might cause a person to make new friends, or a city to build a new freeway. Since most edges in
real-world networks come with a cost, the number of changes in each time step can be assumed
to be small and it can be additionally assumed that every vertex removes or builds only edges
it participates in. Another important point to note is that in most cases it will not be totally
clear for the unsatisfied vertex which edges should be changed to improve the performance. This
can be easily seen in the case of social networks where a person is only able to survey a small
part of the whole network, implying that the change of edges is partially a random process. In
summary, singular networks built by selfish agents evolve in a series of evaluation processes from
single vertices within the network, making small changes to their local edge sets in a random
process defined by some changing rule.

The framework that is introduced in the following section provides a way to describe this kind
of self-organized evolution and to analyze different changing rules with respect to the expected
runtime until a network with a satisfying topology has emerged. This latter analysis is important
because only if the expected runtime is known can it be decided whether a given changing rule is
efficient enough to be implemented in technical communication networks, as ad-hoc communica-
tion networks or peer-to-peer networks. Some first work on how to analyze simple evolutionary
algorithms with respect to the expected runtime has already been done, mainly by the group of
Ingo Wegener [169, 249, 210], but to our knowledge we are the first to do it for more complex
evolutionary algorithms that try to build functional network topologies in a self-organized and
decentralized fashion.

6.3.1 The Model

We introduce an evolutionary network model that describes the evolution of networks with the
following set of properties:

1. There is only one, singular network at any time step.

2. The vertices evaluate the network’s fitness relative to their own position in the network.

3. No vertex knows the adjacency matrix of the whole network.

4. The network evolves so slowly that at any time step only one vertex is active, i.e., the model
is synchronous.

5. All vertices decide independently which edges to build and which to remove.

6. Each vertex behaves selfishly, i.e., it will build a new edge to improve its own situation, not
to improve the situation of others. This implies that a vertex will only insert and remove
edges it participates in.

6. The Principle of Locality in the Evolution of Complex Networks 120

7. There might be external events, e.g., birth, death, failure of or attacks on a subject or object
that is represented by a vertex or an edge of the network. These events are modeled by
addition or deletion of vertices and edges.

The evolution of networks with these properties will be called evolution of singular, selfish and
self-organized (S3) networks and in the following we will formalize their evolution.

Let Gt = (V,Et) denote the graph at time step t where V is a set of vertices and Et is a subset
of V × V . All edges e = (u, v) will be regarded as undirected, i.e., (u, v) ∈ Et iff (v, u) ∈ Et. G
denotes the set of all possible graphs on the set of vertices V .

The fitness of a vertex v in graph G ∈ G is given by f : G × V → R, i.e., the performance of a
graph is always evaluated with respect to one vertex of the graph. This leaves room for designing a
’selfish’ or ’egoistic’ evaluation function. Note that the general form in which the model is defined
allows the value of f(G, v) to be the same for all vertices v. If this is the case, the function measures
the fitness of the graph, independent of a given vertex. But as we understand our model, it is
important to use functions that in principle give different values for different vertices.

A minimally required performance is additionally defined for every vertex v by fmin : V → R. In
the following we will use the same constant value fmin for all vertices. Let Et(v) denote the set
of edges adjacent to v in time step t: Et(v) = {(u, v)|(u, v) ∈ Et}. E(v) denotes the set of all
possible edge sets E(v) on v × {V \v}: E(v) = {E(v)|E(v) ⊆ v × V \v}. Further, we define two
functions that change the set of edges adjacent to v: C+ : V → E(v) and C− : V → E(v). These
are also called the changing rules of the algorithm. Note that every vertex can change only its own
vertex set, i.e., it can only build and remove edges attached to itself. This rule - together with the
evaluation of the network relative to itself - also reflects the selfishness and limited knowledge of
vertices. The latter guarantees that only local decisions are made.

The evolution of a network can now be modeled by the following steps (s. Fig. 6.3):

1. Initialize G0 with (V,E0).

2. In every time step t choose a subset V ′ of vertices and evaluate f(Gt, v) for all of them. For
all v with f(Gt, v) > fmin(v) let v build a new set of adjacent edges Nt+1(v) as the result of
C+(v), otherwise the new set of adjacent edges is the result of C−(v). The new graph Gt+1

is thus composed of the old edge set without the old neighborhood of v, combined with the
new neighborhood of v, i.e.,

Gt+1 = (V, (Et\
⋃

v∈V ′

Et(v)) ∪
⋃

v∈V ′

Nt+1(v)). (6.1)

If not stated otherwise, V ′ will consist of one vertex chosen at random from V .

3. In a last step, those events that change the network from the outside, can be modeled by
adding and/or deleting vertices and/or edges.

Note that the function f(Gt, v) can be seen as an objective function that is personalized to v and
that it can be combined with any rules C+(v) and C−(v) as long as these are local.

This model describes an iterative process of evaluating and manipulating the network’s structure
in a decentralized way and thus we consider it to be a kind of evolutionary algorithm [142]. With
respect to Gould’s definition of an evolutionary theory, we state that the agency of selection in
this model is the set of edges because the edges are the focus of the changing rules. The selection

6. The Principle of Locality in the Evolution of Complex Networks 121

Start:
Initialize with
G = (V,E)0 0

Choose vertex v
randomly from V

Add/delete
vertices/edges

f(Gt
; v) > fmin f(Gt

; v) <= fmin

Gi = (Vi; Ei)

Et+1 =

(EtnNt(v)) [C+(v)

Et+1 =

EtnNt(v) [C (v)-

Changes to
the network
as results of
external events

Changes to
the network
as results of
internal events

())

Fig. 6.3: A general model for the evolution of decentrally organized S3 networks. The model begins
with a graph G0 = (V, E0). In each time step t one of the vertices evaluates the fitness of Gt with respect
to itself by calculating the value of f(Gt, v). If this is higher than a given minimal value fmin, the vertex
will change its current neighborhood Nt(v) to a neighborhood given by the changing rule C+(v). If the
evaluation yields a value smaller than or equal to the minimal value fmin, the vertex changes its current
neighborhood according to C−(v). In a last step, G is eventually modified as the result of events that
happen outside the modeled system, e.g., the death of a person in a social network.

6. The Principle of Locality in the Evolution of Complex Networks 122

mechanism is given by a combination of fmin that determines what kind of changing rule is applied
in a certain situation, and the changing rule itself. Of course, a simple addition or rewiring of
edges would be enough to assure efficacy, i.e., the ability to create new solutions, and scope, i.e.,
all possible solutions. In the following we will show that changing rules can be a bit more selective
in order to reduce the length of the random walk through G(G) to the desired attractor, i.e., they
should be efficient.

Efficiency is of course an essential requirement to use the evolutionary network model for building
robust technical communication networks. In 6.4 we will present two instances of this evolutionary
algorithm for a function f(Gt, v) that is related to the diameter of a network, and where the rules
are designed to minimize the diameter. With this example we will show that it is possible to
guarantee a global network structure in a local, decentralized model where every vertex is myopic
and selfish, but we will also show that the exact design of the changing rules can drastically influence
the efficiency with which this structure is evolved: analyzing two sets of rules for minimizing the
diameter of a tree, we can show that the expected runtime, i.e., the number of time steps until a
favored network structure arises, can be either exponential or polynomial with only minor changes
in the rules. Thus, if some of structural properties are required in the decentrally evolved network,
the problem is in designing those local changing rules that guarantee that every change to the
network is locally favourable and at the same time guides the network towards that part of the
search space where the networks show the globally favored network structure.

We will especially show that not every local rule that could result in a desired network structure is
efficient to do so because the local rule has unwanted and unforeseen side effects. In his book ”Der
Kobra-Effekt” (The Cobra-Effect) [213] Horst Siebert is concerned with laws designed to reward a
desired behavior but that turned out to be ill-posed, as exemplified by the following story Siebert
tells: Once, when India still belonged to the Commonwealth, it is told that there was a plague of
cobras. The governor promised a reward for every cobra head delivered to him, with the intention
that the people would thus be interested in catching the snakes. It is clear that such a reward is
in principle able to steer the behavior of people such that they will catch snakes, thereby stopping
the plague of cobras. But the reaction of the people was quite unforeseen: Instead of doing the
dangerous job of catching the snakes, people started to breed them and bring their heads to the
governor, thus resulting in an increase in the population of cobras. As illustrated by this legend,
a careful design of local changing rules is needed to achieve a global goal, and—coming back to
network design—it is necessary to give the right incentives in a network of selfish agents so that
they can build a globally functional network.

In summary, our evolutionary network model is applicable to those settings in which the following
properties are fixed:

1. vertices are assumed to be myopic and selfish;

2. the global network properties that are desired to guarantee a globally functional network are
provided;

and where the local evalution function and the changing rules can be influenced by the system.
Primarily, we think of technical communication networks because here the changing rules and the
local evaluation function determining when the changing rule will be applied can be implemented
by the technical device or software that connects the user to the network. But we think that
exploring this model theoretically is also of general value for complex systems science because it
shows for a special emergent property, namely the collective network building process, what kind
of network structures can be collectively built in a complex system. We will now discuss changing
rules for different desired global network properties.

6. The Principle of Locality in the Evolution of Complex Networks 123

6.4 The Design of Efficient Changing Rules - A First Example

The first task we want to solve by the above given evolutionary network model is to shrink a
graph’s diameter to a desired size by keeping the number of edges constant9. Since the diameter
of a network is a global network structure, we have to design a local changing rule that considers
the selfishness of the vertices and gives them an increased benefit if they find an edge that globally
reduces the diameter or seems at least promising to do so in the long run.

The following centrality values are needed, as described in detail in [132]. The eccentricity ecc(G, v)
of a vertex v in graph G is defined as the maximal distance of v to any other vertex y:

ecc(G, v) = max
y∈V

d(v, y) (6.2)

The diameter D(G) of a graph G is defined as the maximal eccentricity of any vertex v in the
graph:

D(G) = max
v∈V

ecc(v) (6.3)

Seen from the perspective of the vertex, the eccentricity represents something like a ’personalized
diameter’ of a graph. The closeness centrality close(G, v) of a vertex v in graph G is defined as
the sum over all distances from v to any other vertex y:

close(G, v) =
∑

y∈V

d(v, y) (6.4)

The Wiener index W (G) of a graph G is defined as the sum over the distances between all pairs
of vertices u, v. This equals the sum over all closeness centrality values:

W (G) =
∑

v∈V

close(v) (6.5)

Equipped with these definitions we can now introduce two instances of the evolutionary algorithm
for S3 networks and analyze their expected runtime behavior.

The goal of the following two algorithms in the framework of the evolutionary network model
given in Fig. 6.3 is to provide the vertices in a network with a selection mechanism that enables
them to reduce the diameter of the network to a desired value. In this scenario we disregard any
external events that could change the network; the only changes to the network are controlled by
the vertices within the network. Since every vertex has only a limited view of the network it cannot
know which edge will be the best to build. Both algorithms choose one vertex randomly in every
time step. If its current eccentricity is greater than the desired diameter it follows that the current
network has a diameter greater than the desired diameter. The vertex then tries to rewire one of
its edges to improve its own situation.

It is clear that different adaption rules might solve this problem, including even a totally random
insertion and removal of edges. Here, we will show that the design of efficient changing rules is
essential for the efficiency of the algorithm in constructing a network topology with the desired
property. For this, we analyze the expected runtime of the two algorithms given below. The expected
runtime denotes in our case the expected number of time steps t from G0 to a graph Gt such that
for all time steps t′ > t D(Gt′) ≤ k where k is the desired diameter, i.e., the evolutionary process
has found some attractor in G(G) . We will now discuss the algorithms in detail.

9 Note that this is a toy example to show how difficult the design of efficient local changing rules is. Of course,
to shrink the diameter of a network to a wanted size, especially to 2 as we will do in the following, is no task
that would reasonably emerge in a technical communication network. It is just an example to make a point
about the design of local changing rules.

6. The Principle of Locality in the Evolution of Complex Networks 124

v zw

Fig. 6.4: In Algorithm 1, one vertex v is chosen at random in every time step. If its eccentricity is greater
than fmin it will try to connect to a non-leaf vertex in distance 2 (black vertex). Let z be the second
neighbor chosen and w be the vertex connecting both. Then edge (v, w) will be replaced by edge (v, z) if
the eccentricity of v does not increase due to this process.

Algorithm 1

Let G0 be a connected tree on a set of vertices V . The fitness of any vertex in the tree is evaluated
by its eccentricity:

f(G, v) = ecc(v) (6.6)

fmin can be set to any value between n− 1, the maximal possible eccentricity, and 2, the minimal
possible diameter for any tree with more than two vertices. In every time step t, choose one vertex
v from V at random and calculate f(Gt, v). Changing rule C+(v) is defined as follows (s. Fig. 6.4):

1. Choose one of the non-leaf vertices z in distance 2 to v at random. Let w be the vertex that
is connected to both v and z.

2. Generate a new graph G∗
t (v, z) by replacing edge (v, w) by edge (v, z).

3. If ecc(G∗
t (v, z), v) ≤ ecc(Gt, v) then set Gt+1 = G∗

t (v, z), otherwise set Gt+1 to Gt, i.e., if the
maximal distance of v to any other vertex is not increased due to the rewiring then the new
graph is kept; otherwise the old one is restored10.

Note that we ignore second neighbors z with degree 1 (a leaf) because they will always increase
the eccentricity of v if the edge to z were built.

This rule will maintain the graph’s connectedness and thus the graph will be a tree at any time.
Furthermore, v will only remove edges that it participates in and can only initiate the building of
edges it participates in, i.e., C+ manipulates only the direct neighborhood of v. There will be no
change in the graph if f(Gt, v) ≤ fmin, i.e., C−(v) = Et(v).

In the following we want to show that the above given evolutionary algorithm will eventually build
a tree with a diameter smaller than or equal to fmin, independent of the initial tree. It is easy
to see that a graph Gt with D(Gt) ≤ fmin will not change any more, and thus the runtime of
algorithm 1 is defined as the number of time steps until such a tree is built. First, we will show
that the process can be described as a Markov chain. We define the set S of states {s1, s2, . . . , sk}

10 It is often remarked that the eccentricity itself is not a local network measure. We will deal with this question
in 6.4.1.

6. The Principle of Locality in the Evolution of Complex Networks 125

vw

z

(a) (b)

Fig. 6.5: (a) The graph has a diameter of 7, the chosen vertex v has an eccentricity of 4. If v now
chooses second neighbor z and replaces edge (v, w) by (v, z), its eccentricity will not change, but the
diameter of the graph has actually increased to 8. (b) All vertices in white have an eccentricity of 3. If
fmin were to be 2, none can change the edge set if strict improvement of eccentricity is required for an
edge replacement.

as the set of connected trees on vertex set V . Since any subset of graphs on a given set of vertices
is finite, S is also finite. Let every state si represent one connected tree si = (V,Ei). State si is
connected to sj if their edge sets Ei and Ej obey the following relation:

∃ v, w, z ∈ V |Ej = (Ei ∪ (v, z))\(v, w), (6.7)

deg(z) > 1 and ecc(sj , v) ≤ ecc(si, v) (6.8)

The weight on this edge equals the probability that a tree si in time step t will be changed into
tree sj . This probability is equal to 1/n2(v), where n2(v) denotes the number of non-leaf vertices
w that are in distance 2 to v, also called the non-leaf second neighbors of v. Since this number
depends only on the structure of Ei, the transition probability between two states is independent
of how the network has evolved and is thus constant in time. Note that in the Markov chain the
edges are directed, i.e., there is a designated source and target vertex for every edge. We will
denote directed edges as [si, sj]. Both edges, [si, sj] and [sj , si], exist iff Ei and Ej obey Equ. 6.7
and ecc((V,Ei), v) = ecc((V,Ej), v). All states si with D(si) ≤ fmin will be denoted as final states.

We will first state that the network will eventually evolve into a network with a diameter smaller
than fmin.

Lemma 6.1
For t→∞, D(Gt) ≤ fmin.

Proof 6.1
If D(G0) ≤ fmin, then ∀t : D(Gt) = D(G0). Let now D(G0) be greater than fmin. Then, there is
at least one vertex v with ecc(G0, v) > fmin. We will now show that there is always a path from
state s0, representing G0, to a tree Gt′ at time t′ with D(G′

t) ≤ fmin. Let z, z′ be two vertices with
maximal distance in Gt. Let P (z, z′) = {z, z1, z2, . . . , z′} be the path between z and z′. If now z
is chosen, it has an eccentricity greater than fmin, and if it itself chooses its second neighbor z2

6. The Principle of Locality in the Evolution of Complex Networks 126

then the eccentricity of z will not increase. Thus, edge (z, z2) will replace edge (z, z1). If in each
time step only vertices with maximal eccentricity are chosen, this process will eventually lead to
a tree with a diameter decreased by one and eventually to a tree with the desired diameter. The
probability for such a way through the states is small but non-zero.

Since every tree having a diameter of at most fmin (final state) will not be changed any more and
there is always a path with non-zero probability from every state si to some final state, the system
will eventually reach one of these states and remain there.

Fig. 6.5 a) shows that the rule given above has some problems: owing to the change of perspective
on the evaluation of the network in every step, it can easily happen that a step in the ’right’
direction, i.e., to a tree with lower diameter, is reverted in the following step by another vertex
that cannot ’see’ the improvement of the previous step. This is one problem. Another problem
arises if many vertices have to move together in the same direction before the diameter of the whole
tree decreases. An example of such a situation is given in Fig. 6.5 b): If fmin = 2 is required, this
can only be fulfilled if n−1 vertices are connected to one central vertex, i.e., if the tree constitutes
a star. In the example given in Fig. 6.5 this implies that either of the three vertices of one side have
to flip to the other side under the given changing rule. The inner vertices will never change their
edge set, and any outer vertex v that is chosen to evaluate f(Gt, v) will instantly flip sides because
its only non-leaf second neighbor is the opposite inner vertex and because this flip will not increase
its eccentricity. After the first time step there will be four vertices on the one side and two on the
other. The only way to proceed to the star is if after this step one of the remaining two vertices
changes side, and after that that the remaining vertex flips sides. Let x be the number of vertices
on one side and n− 2−x the number of vertices on the other side. W.l.o.g. let x ≤ n− 2−x. The
probability that any vertex of the minority flips sides is thus x/(n − 2) and the probability that
one of the majority flips sides is 1 − (x/(n − 2)). This situation can be described by the famous
’Urn of Ehrenfest’ model and we can use Ehrenfest’s analysis of the expected number of steps until
all vertices of one side have flipped which results in 1

n−22n−2(1 +O(n− 2)) [42].

Theorem 6.1
There is a family of graphs such that with fmin = 2, the expected runtime of Algorithm 1 is
bounded by Ω(2n).

Note that for fmin(v) = 2 any tree will eventually evolve into a member of this family.

From this, it seems obvious that the changing rule C+(v) is not constructed sensibly: Of course,
backward steps could be prevented by allowing only those steps that lead to a strict improvement
of the vertex’ eccentricity. But as Fig. 6.5(a) shows, this small adjustment will eventually lead to
trees in which none of the vertices can change anything despite the fact that the tree still has a
diameter that is higher than desired. We will next show how the changing rule can be adapted
such that it is possible to improve the expected runtime to O(n5).

Algorithm 2

Algorithm 2 differs from Algorithm 1 only in the formulation of C+(v):

1. Choose one of the vertices z in distance 2 to v at random. Let w be the vertex that is
connected to both v and z.

2. Generate a new graph G∗
t (v, z) by replacing edge (v, w) by edge (v, z).

6. The Principle of Locality in the Evolution of Complex Networks 127

3. If close(G∗
t (v, z), v) < close(Gt, v) then set Gt+1 = G∗

t (v, z), otherwise Gt+1 = Gt.

As before, only vertices with an eccentricity higher than fmin will be allowed to change the current
network. However, the decision whether a new edge will actually replace one of the old edges
is based on a comparison of the closeness centrality in the prospective tree with the closeness
centrality in the current tree. Note that this time the new value has to be strictly smaller than
the previous value. Nonetheless, the change in the formulation of C+(v) from Algorithm 1 to 2
is actually quite small: Recall that the eccentricity of a vertex v is the maximal distance of v to
any other vertex w while the closeness centrality is the sum over all distances from v to any other
vertex w. Thus, in the latter case, we use much more information about the current tree but the
calculation of eccentricity and closeness centrality values in a tree takes the same time, namely
O(n), with a simple variant of a single-source shortest path algorithm [100]. We will now prove
the following theorem:

Theorem 6.2
In Algorithm 2, the expected runtime is bounded by O(n5).

Proof 6.2
The proof is based on the following two lemmata.

Lemma 6.2
In every connected tree T with D(T) > fmin there is at least one vertex v with a second neighbor
z such that close(G∗

t (v, z), v) < close(Gt, v)

Proof 6.3
Let Gt be a tree with D(Gt) > fmin. Let v1 and v2 denote two vertices with distance dt(v1, v2) =
D(Gt). It is clear that these vertices have to be leaves, i.e., vertices with only one edge. Let w1

and w2 be the respective neighbor vertices of v1 and v2. The path P (v1, v2) between v1 and v2 will
contain w1 and w2:
P (v1, v2) = {v1, w1, z1, . . . , z2, w2, v2}. Since v1 and v2 are in distance D(Gt) of each other, all
vertices adjacent to w1 other than z1 have to be leaves, otherwise v1 and v2 could not be in maximal
distance within the graph. Let now vertex v1 be chosen by the algorithm and try to insert an edge
to z1.

As can be seen in Fig. 6.6, the closeness centrality of vertex v1 in G∗
t (v1, z1) is given by:

close(G∗
t (v1, z1), v1) = close(Gt, v1) + |Tw1

| − |Tz1
|, (6.9)

where |TX | denotes the number of vertices contained in subtree TX , as depicted in Fig. 6.6. Subtree
TX denotes the subtree containing vertex X that emerges if edges (v1, w1) and (w1, z1) are removed
from Gt. Equ. 6.9 states that the distance from v1 to vertices from Tw1

is increased by one, and
that the distance from v1 to vertices from Tz1

is decreased by one in G∗
t (v1, z1). If this new closeness

centrality value is smaller than close(Gt, v1) then the new edge is built and the old edge is removed
from the network and the case is proven. Let us now assume that the closeness centrality value in
G∗

t (v1, z1) is not smaller than the one in tree Gt. It follows, that

|Tw1
| ≥ |Tz1

|. (6.10)

We will now show that in this case any vertex v2 with d(v1, v2) = D(Gt) would decrease its closeness
centrality value by replacing edge (v2, w2) with (v2, z2) where z2 is a second neighbor of v2 on the
path to v1 (Fig. 6.7).

close(G∗
t (v2, z2), v2) = close(Gt, v2) + |Tw2

| − |Tz2
|. (6.11)

6. The Principle of Locality in the Evolution of Complex Networks 128

Tz1

z1 w1

v1

Tw1

Tv1

Fig. 6.6: Algorithm 2: In the network depicted above, vertex v1 has been chosen at random, and
afterwards it chooses one of its second neighbors at random, in this case z1. w1 is the neighbor of both.
v1 will replace edge (v1, w1) by (v1, z1) if |Tz1 | > |Tw1 |.

Tv2

Tz1

v2

w2 z2 z1 w1

v1

Tw2

Tz2

Tw1

Tv1

Fig. 6.7: Algorithm 2: Vertices v1 and v2 are maximally distant to each other, i.e., dt(v1, v2) = D(Gt).
As sketched in Fig. 6.6, the tree can be partitioned into three different subtrees for each pair of vertices
v1, z1 and v2, z2, namely Tv1 , Tw1 , Tz1 and Tv2 , Tw2 , Tz2 .

6. The Principle of Locality in the Evolution of Complex Networks 129

As can be seen in Fig. 6.7, Tz2
can be expressed as follows:

|Tz2
| = |Tz1

| − (|Tw2
|+ |Tv2

|) + |Tw1
|+ |Tv1

|. (6.12)

Inserting this in Equ. 6.11 and considering that |Tv1
| = |Tv2

| = 1, yields:

close(G∗
t (v2, z2), v2) = close(Gt, v2) + 2 · |Tw2

| − (|Tw1
|+ |Tz1

|) (6.13)

With |Tw1
| ≥ |Tz1

| > |Tw2
| it follows that close(G∗

t (v2, z2), v2) < close(Gt, v2).

We will now prove the following lemma regarding the non-increasing Wiener index of the evolving
trees:

Lemma 6.3
Whenever Gt+1 has emerged from Gt because of an edge replacement, then W (Gt+1) < W (Gt).

Proof 6.4
Let Gt+1 be evolved from Gt by the replacement of edge (v1, w1) with edge (v1, z1) according to
Algorithm 2. Let again Tv1

, Tw1
, Tz1

denote the subtrees as depicted in Fig. 6.6. It is clear that
the distance of vertices has only changed for pairs of vertices x, y where x is either in Tw1

or Tz1

and y is in Tv1
. The distance of vertices from Tw1

to vertices in Tv1
(and vice versa) has increased

by one, and the distance of vertices from Tz1
to vertices in Tv1

(and vice versa) has decreased by
one. Thus, the Wiener index of the graph changes as follows:

W (Gt+1) = 2 · (|Tw1
| − |Tz1

|) · |Tv1
|+

∑

x∈V

close(Gt, x). (6.14)

Since edge (v1, w1) has been replaced by (v1, z1) it is clear that |Tw1
| < |Tz1

| and the lemma is
proven.

Combining both lemmata now yields Theorem 2: The first lemma states that there is at least
one pair of vertices v, z such that G∗

t (v, z) has a smaller closeness centrality for v. The expected
number of time steps until this pair is chosen is bounded from above by O(n2). The maximal
Wiener index is bounded from above by O(n3) when the tree is arranged as a chain. Since every
edge replacement implies a decrease of the Wiener index of at least 1, the expected runtime of
Algorithm 2 is thus bounded from above by O(n5).

The two instances of evolutionary algorithms for the evolution of networks given above serve very
well to show how a small change in the adaptation rule can make the difference between having
polynomial and exponential expected runtimes. So far, the algorithms suffer from the need to flood
the whole network in order to evaluate the eccentricity or closeness centrality of a vertex. This
provides a motivation to present a localized version of the algorithm in the next section.

6.4.1 Localized Version

The motivation for a localized version arises from the following question: Will a node in a real
network, e.g. a city in a country, really evaluate how far away it is from the maximally distant
city or evaluate the sum of the distances to all other cities? This is not very likely. It is much
more likely that citizens will complain if some other city that is geographically near is far away
in practical terms with respect to the infrastructure. That is, citizens will be unsatisfied with

6. The Principle of Locality in the Evolution of Complex Networks 130

the infrastructure if their local environment is not easily accessible. A new street that replaces
another one will thus be evaluated as to whether it reduces the distance to the cities within a given
(geographical) radius and/or makes other cities accessible within a given radius.

This analogy prompted a third algorithm that is a localized variant of Algorithm 2. Again, we
start with a tree on V , and one of the vertices is chosen at random in every time step. The vertex
initiates a restricted broadcast of depth fmin + 1 and thus tests whether there are vertices in
distance fmin + 1. If there are such vertices, then the vertex knows that its eccentricity is larger
than fmin. Let again Ni(v) denote the set of vertices in distance i to v, with i > 0. Then the
following steps apply:

1. Choose one of the vertices z in distance 2 to v at random. Let w be the vertex that is
connected to both v and z.

2. Count the number nmin of vertices within distance fmin and evaluate the local closeness
centrality closemin(Gt, v) defined as the sum of distances to all vertices within distance fmin.

3. Generate a new graph G∗
t (v, z) by replacing edge (v, w) by edge (v, z).

4. The sum that defines the local closeness centrality can be partitioned into three different
parts: First, there is the sum of distances to all vertices that were already accessible in fmin

steps in Gt. This sum might be increased or decreased because of the new edge. Second,
some of the formerly accessible vertices might no longer be accessible (within fmin steps).
Since they were accessible before, their distance to v is now fmin + 1. n−(v, z) denotes the
number of these vertices. Then, there is a third group of n+(v, z) vertices, namely those that
are newly accessible within fmin steps. Thus, they had a distance of fmin +1 before the new
edge replaced the old. To make both closeness values comparable they have to be based on
the same set of vertices. This can be accomplished by adding

close′min(Gt, v) = n+(v, z) ∗ (fmin + 1) + closemin(Gt, v) (6.15)

and
close′min(G∗

t (v, z), v) = n−(v, z) ∗ (fmin + 1) + closemin(G∗
t (v, z), v) (6.16)

This closeness is called the balanced local closeness centrality. If now the new closeness value
is smaller than the old one, the new edge is kept, otherwise the old edge is restored.

Experimental results of this localized version are shown in comparison with the global version in
Fig. 6.8. For the special case of fmin = 2 we will now show that the expected runtime until an
attractor in G(G) is hit is bounded by O(n4).

Lemma 6.4
For fmin = 2 the localized version of Algorithm 2 has an expected runtime of O(n4).

Proof 6.5
The proof proceeds in three steps:

1. Let Gt be a tree T with a diameter D(T) > 2 and let vertex v have an eccentricity ecc(T, v) >
2 and a second neighbor z where w is a common neighbor to v and z. We show that
close′2(T, v) > close′2(T (v, z), v) iff deg(w)− 1 < deg(z).

6. The Principle of Locality in the Evolution of Complex Networks 131

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 50 100 150 200 250 300

N
um

be
r

of
 ti

m
e

st
ep

s

Number of
 vertices
 in tree

global
local

Fig. 6.8: The number of time steps needed by the localized version of Algorithm 2 is given in comparison
with the number of time steps needed by Algorithm 2 with global information. fmin is set to 2 in both
cases, and the starting tree is a chain of n vertices. It shows that the localized version is not much slower
than the global version despite the fact that the information on which the decision is based is much smaller.

2. We show that every tree Gt with a diameter D(Gt) > 2 will have at least one vertex v
with a second neighbor z such that a new edge is built according to the localized version of
Algorithm 2.

3. If a new edge is built in time step t+1 then the following global objective function is strictly
increased:

f(T) =
∑

v∈V

∑

(v,w)∈E(T)

deg(w) (6.17)

such that f(Gt) < f(Gt+1).

Let Gt be a tree with a diameter D(Gt) > 2 at time t. Its restricted closeness in T is described by:

close2(Gt, v) = deg(v) + 2 ·
∑

w′ ∈ Nt(v)
w′ 6= w

(deg(w′)− 1) + 2 · (degt(w)− 1), (6.18)

where Nt(v) is defined as the set of direct neighbors of v.

Let now v be chosen first and then let v choose z as the second neighbor to which it builds a
temporary edge. v’s local closeness now corresponds to:

close2G
∗
t (v, z), v) = 1 + 2

∑

w′ ∈ Nt(v)
w′ 6= w

(deg(w′)− 1) + 2 · degt(z). (6.19)

To build the balanced local closeness centrality it is now necessary to determine the union of the
vertices that are counted by at least one of the values close2(Gt, v) or close2(G

∗
t (v, z), v). The

neighbors of z are visible for v in G∗
t (v, z), but they were in distance 3 in Gt, thus we have to add

the product of 3 · (deg(z) to close2(Gt, v). On the other hand, the neighbors of w besides z are no

6. The Principle of Locality in the Evolution of Complex Networks 132

longer visible to v in T ∗(v, z), thus we have to add the product of 3 · (deg(w) − 2). It follows for
close′2(T, v) and close′2(T

∗(v, z), v):

close′2(Gt, v) = deg(v) (6.20)

+ 2
∑

w′ ∈ Nt(v)
w′ 6= w

(deg(w′)− 1) + 2 · (degt(w)− 1) + 3 · (degt(z)− 1)(6.21)

close′2(G
∗
t (v, z), v) = deg(v) + 2

∑

w′ ∈ Nt(v)
w′ 6= w

(deg(w′)− 1) + 2 · degt(z) + 3 · (degt(w)− 1)(6.22)

Ad 1: It follows that the new closeness is strictly smaller than the old one only if:

close′2(Gt, v)− close′2(G∗
t (v, z), v) > 0⇔ (6.23)

degt(z) > degt(w)− 1 (6.24)

Ad 2: Let v be a vertex with an eccentricity equal to D(Gt), and let w denote its only neighbor.
Since v has the maximal distance to some other vertex in the graph and D(Gt) > 2, w can only
be connected to one non-leaf z. Let z′ denote some neighbor of z other than w. This vertex has
an eccentricity of at least 3 because its distance to v is 3. If now degt(z) ≤ degt(w)− 1) then the
edge between v and z will not be built, but if z′ were chosen and it chose w as a second neighbor
it is clear that degt(z) − 1 < degt(w) and thus the edge (t, w) would replace (t, z). In summary:
While the diameter of the tree is still larger than 2, there is at least one vertex that can enhance
its benefit locally.

Ad 3: In the last step we want to show that a local improvement can be translated into a global
improvement. For this we analyze the behavior of the following global objective function:

f(Gt) =
∑

v∈V

∑

(v,w)∈Et

degt(w) (6.25)

Note that this function is minimal for a chain C(n) of n vertices with a value of f(C(n)) = 4n− 6
and maximal for a star S(n) of n vertices with a value of f(S(n)) = n2 − n− 1.

We will now show that every replaced edge results in a strictly increased value of f . Let Gt be the
first graph and Gt+1 be a graph in which edge (v, z) replaces edge (v, w) according to the rules of
the localized version of Algorithm 2. Since (v, w) has been replaced by edge (v, z) we know that

close′2(Gt, v) < close′2(G
∗
t (v, z), v), (6.26)

and it follows that
degt(z) > deg(w)− 1. (6.27)

With this knowledge we can determine how f(Gt+1) has changed with respect to f(Gt): all vertices
that are neighbors of none of v, w, z contribute the same amount to f(Gt) as to f(Gt+1). All
vertices that are neighbors of v except w contribute the same amount as before. v’s contribution
has changed by degt(z)− deg(w)− 1. w’s contribution is decreased by deg(v), z’s contribution has
increased by deg(v). All neighbors of w except v and z contribute one less than before, in total this
adds up to −deg(w) + 2. All neighbors of z in Gt except w contribute one more in Gt+1, in total
this adds up to deg(z)− 1). This results in the following change of f(Gt+1) with respect f(Gt):

f(Gt+1)− f(Gt) = 2 · (degt(z)− deg(w)) + 1 (6.28)

6. The Principle of Locality in the Evolution of Complex Networks 133

In summary, there is at least one pair of vertices v, z in every tree Gt with a diameter D(Gt) > 2
such that v increases its local fitness, and this pair will be chosen after an expected number of time
steps of O(n2). Every local improvement increases f(G) by at least 3 and thus it takes at most
O(n2) improvements until the network with maximal global fitness f(G) = n2−n− 1 has evolved.
This results in an expected runtime that is bounded from above by O(n4). �

6.4.2 Dynamic Version

Another question is how stable the algorithm is if the network is modified by external events, as
indicated in the lower part of Fig. 6.3. In this case we wanted to test experimentally how added
vertices disturb the process of reducing the diameter. To analyze the stability of the algorithm,
we started with a chain of 25 vertices and fmin = 2. After a given number of time steps a vertex
was added by an edge to a randomly chosen vertex already in the tree. The number of time steps
needed to reduce the diameter to 2 was measured as well as the resulting number of vertices in
the graph. Any run still incomplete by 10, 000 time steps was stopped. Table 6.1 shows the result
of this variant. It seems that addition of vertices is tolerated quite well if it occurs only after
every vertex has had the chance to get picked. In these cases the runtime was of course longer
than a normal run with only 25 vertices, which takes about 44 time steps. On the other hand,
it is still faster than a run with a chain of 50 vertices (no added vertices), that would normally
take about 1100 time steps. When vertices were added after fewer than 25 time steps, almost
none of the 35 runs would stop before 10, 000 time steps, but those that did still showed a good
runtime. In summary, a dynamic version of Algorithm 2 is strongly dependent on the frequency
with which vertices are added to the system. There seems to be a phase transition such that if
vertices are added with a lower frequency the system behaves well and if vertices are added with
a frequency higher than the critical value associated to the phase transition the system behaves
totally different. How the relationship between this critical frequency and the size n of a chain can
be described remains an open question.

Tab. 6.1: The tree started with 25 vertices. Every x time steps one vertex was added to the tree as
described in the text. Average number of time steps needed to build a star and the average number
of vertices were only evaluated for those runs that stopped before 10,000 time steps. Every experiment
includes 35 runs.

#Time steps until Avg #time steps Avg #vertices #Trials with
vertex was added > 10, 000 Time steps
- 44 25 0
37 486 37 0
35 591 41 0
32 540 41 0
30 567 43 1
27 770 52 3
25 649 50 2
22 812 61 22
20 606 55 26
17 665 63 33
14 - - 35

In the next section we want to present another algorithm that uses a local evaluation function
and shows very robust behavior and interesting properties, with possible applications to ad-hoc
communication networks.

6. The Principle of Locality in the Evolution of Complex Networks 134

1 2 3 4
...

Fig. 6.9: On the left a grid is shown with a diameter of approximately
√

n. If the edges are removed as
indicated by the numbers, a tree (right) will emerge with a diameter of n − 1.

6.5 Reducing the Number of Edges in an Ad-Hoc Communication Network

It is expected that in the near future large sensor networks will collect data in environments that
are not accessible by humans. A sensor is a small device able to measure some predefined property,
e.g., the temperature or humidity in a room, with limited energy resources and limited broadcasting
abilities for wireless communication. Sensors themselves are static, but the connections between
them are often built on demand, and thus they belong to the class of ad-hoc networks. Normally,
sensors can communicate with every other sensor that is within their transmission radius, but they
can decide to ignore some of the messages that they receive and only process and forward those
from sensors from a given buddy list. The network defined by edges from buddy lists, and generally
any subgraph of a given graph, is also called an overlay network of that graph. If every sensor
could communicate directly with every other sensor in the network this would require a very large
transmission radius and thus too much energy [49]. To avoid this, a large number of different
network structures have been proposed in which each vertex has a limited transmission radius and
a limited degree in the resulting overlay network. Furthermore, these networks try to optimize a
given objective function like the area coverage [253, 230] and/or a low average distance [158, 51].
The question of energy efficient broadcasting becomes even more complicated in mobile ad–hoc
networks, e.g., when special devices in cars build ad-hoc communication networks to exchange
data about traffic flow that is then submitted to the driver to prevent congestion. Also here, a
(sometimes implicitly) reduced edge set is often the starting point on which efficient broadcasting
protocols are based [112].

Sensor networks are often modeled as geometric k-next-neighborhood graphs G, where n vertices
are placed in a metric space, e.g., Euclidian space, and every vertex is connected to its k geo-
metrically nearest vertices. We have shown that any two neighbors of a vertex have a chance of
approximately 58% of also being neighbors to each other [83]. Thus, every vertex participates in a
large number of triangles. Since edges in ad-hoc networks can be used to route messages and most
devices have only limited battery power, it might be reasonable to reduce the number of edges of
a vertex in the communication network to minimize the number of routing requests. On the other
hand, the diameter, i.e., the number of devices on the longest communication path, should not be
increased too much because every device is a possible point of failure.

In some scenarios, it might be required that every vertex hold as few edges as possible, e.g. to reduce
the number of communications needed in a one-to-all broadcast, without increasing the diameter
too much. It seems natural that triangles of the sort described above provide a reasonable way to
reduce the number of edges in the graph by the following algorithm.

6. The Principle of Locality in the Evolution of Complex Networks 135

Fig. 6.10: The network on the left is a k-next–neighborhood graph with 1000 vertices, each connected
to its ten geometrically next vertices. On the right, the same network is shown after the random removal
of triangles as described in algorithm 3. The diameter of the network has increased from 24 to 30 while
the average distance between vertices has only slightly increased from 10.4 to 12.5.

6.5.1 Algorithm 3

Start with G0, a k-next-neighborhood graph in a metric room. In every time step choose one
vertex v at random. The fitness f(G, v) is given by the number of triangles v participates in and
fmin is set to 0. C+(v) chooses one of the triangles at random and removes one of the two edges
connected to v.

Note that this rule will keep a connected network connected. It is especially appealing because it
uses only information from the immediate neighborhood of v. Furthermore, many of the operations
can be conducted simultaneously without fearing any inconsistent information on the network. On
the other hand, there are worst–case scenarios in which the diameter will increase from O(

√
n) to

Θ(n) (Fig. 6.9) but these scenarios are very unlikely overall. Our empirical results have shown that
this simple rule is nonetheless very robust and shows only slight increases of the original diameter.
Furthermore, the number of time steps until nearly all vertices have no more triangles in which
they participate is quite low (cf. Figs. 6.10 and 6.11).

Some ad-hoc communication networks like sensor networks are modeled as unit-disk networks
where every vertex is connected to all other vertices within its unit-disk [138]. If the devices are
uniformly distributed this approaches to a k-next-neighborhood graph. To guarantee connected-
ness, k might be quite large at the beginning, but for most communication protocols it is better
to subsequently reduce the number of edges in the graph. Here, the algorithm depicted above
might be an interesting protocol to reduce the number of edges without increasing the diameter
too much. Of course, the algorithm can easily be altered to guarantee a certain diameter: the
chosen vertex could additionally evaluate its current eccentricity and then decide whether it will
remove an edge. Similarly, vertices with an eccentricity that is too high could also begin to build
new triangles. Further research will have to show which kind of rules are most applicable to which
specific situation.

The first algorithms presented so far were concerned with the optimization of a global network

6. The Principle of Locality in the Evolution of Complex Networks 136

200 400 600 800 1000

2000

4000

6000

8000

n
u
m

b
er

 o
f
ti
m

e
st

ep
s

re
sp

.
ed

g
es

number of vertices in tree

(a)

200 400 600 800 1000

10

20

30

40

.

D
ia

m
et

er
 r

es
p
.
av

g.
 p

at
h
 l
en

gt
h

number of vertices in tree

(b)

Fig. 6.11: Empirical results for algorithm 3. All values have been obtained from 35 samples, each with
n vertices, connected as a k-next-neighborhood graph with k = 7. Algorithm 3 was stopped after time
step t′ when in n subsequent steps no change of the edge set had occured; the runtime is thus given by
t = t′ − n. The left diagram shows the runtime (black boxes) of algorithm 3. For fixed k it is linear with
n and shows only little deviation. Gray boxes indicate the number of edges after the process has stopped.
The deviation is so little that it cannot be seen in this scaling. On average, the number of edges of the
beginning graph (n · k) has been reduced to a third. The right diagram shows the diameter of the initial
graph (black boxes) and after the process has stopped (gray boxes), and the corresponding average path
lengths (black and gray diamonds). The empirical results show that the diameter and average path length
is only slightly increased by the procedure despite the fact that approximately two thirds of the edges have
been removed.

6. The Principle of Locality in the Evolution of Complex Networks 137

property in a steady environment. In the following section we will discuss whether another global
property, namely the degree distribution, can be altered in reaction to environmental changes.

6.6 Self-Adapting Network Structures for Peer-to-Peer Networks in Random

Failure and Attack Scenarios

It is a long-standing observation that a scale-free network structure [21] is more stable against
random failures and more sensitive against directed attacks than a corresponding random graph
[6]. It would thus be favorable to have a scale-free network structure in the first scenario, and a
random graph structure in the second. To change the network structure in reaction to an external
event like a random failure or an attack is possible in all those networks that are essentially an
overlay network of the Internet such as various kinds of peer-to-peer networks [146]. These networks
inflict nearly no cost on the building of an edge independent of its physical length and allow the
building of new edges quickly.

It could be shown that many peer-to-peer networks are small-worlds [242] or scale-free networks
to start with, due to the nature of their attaching rules [206, 209]. But so far no protocol is
known that lets the network’s degree distribution change in response to the type of external event,
in this case random failures vs. directed attacks against the high-degree vertices or hubs. Since
most of these communication networks are not centrally managed, this adaption must occur in a
decentralized manner. Since external events play a major role in this setting, we will first adapt
the above given evolutionary network model and then develop a set of local changing rules that
allow for a self-organized shifting of the degree distribution that stabilizes the network’s structure
in both scenarios, under attack or random failures.

As stated in [6], a random network from the G(n, p) model is less stable than a scale-free network
in the case of random failures, but is on the other hand more stable in the case of attacks. The
differences between these two network models are mainly based on the difference in their degree
distribution: In a random graph every vertex has expectedly the same degree, and every vertex will
contribute the same stability to the network. In the scale-free architecture, a high degree vertex
that is attacked will sever the networks connectivity heavily, but on the other hand it is unlikely
that a random failure will hit exactly this vertex.

Many of our modern communication networks, e.g., the Internet, the WWW, peer-to-peer net-
works, sensor networks, and other multi-hop communication networks, are prone to random failures
and would thus benefit from a scale-free or at least a right-skewed degree distribution. Indeed, some
of the protocols of peer-to-peer networks result in a scale-free network structure [206, 209]. On
the other hand, these networks might suffer from attacks from time to time and in these situations
it would be helpful to switch to a network structure in which the degree distribution is normally
distributed or at least shows a very small deviation from the average. Since most real-world net-
works are not centrally organized it is not possible to detect an attack situation from a bird’s eye
view and change the network’s structure in a coordinated manner. One possibility is that every
single vertex tries to detect an attack locally and subsequently changes its local neighborhood by
connecting to random vertices in the network, as proposed by [122]. This approach is difficult: if
every vertex can only see its local neighborhood it will detect an attack only if a large proportion
of the network is already attacked. Here, we propose a second possibility, namely a simple reaction
scheme that is able to drive the network’s structure into the best possible structure independent
of whether it is in an attack or random failure scenario.

6. The Principle of Locality in the Evolution of Complex Networks 138

Start:
Initialize with
G = (V,E)0 0

Gi = (Vi; Ei)

Re-insert
vertex v

Choose vertex v
and delete it

For all neighbors
w of v apply C

Et+1 =

(Et Et(v))
[

C(w)-

Fig. 6.12: A evolutionary network model similar to the one introduced in Fig. 6.3 that sketches the
cycle of attacks, or random failures that remove a vertex from the network, the reaction of its neighbors
to this event, and the re-entry of the removed vertex into the network.

6.6.1 An Evolutionary Network Model for Attack and Random Failure Scenarios

The evolutionary network model is a variant of the general evolutionary network model described
in Fig. 6.3. This variant is defined as follows: Given a graph Gi = (Vi, Ei) we delete one vertex in
every time step i+ 1. In an attack scenario the removed vertex is one of the vertices with highest
degree, in a random failure scenario it is chosen uniformly at random. This removal is modeled as
an external event in the model of Fig. 6.3. We assume that both kinds of removals will leave the
vertex physically intact and thus we allow it to re-connect to the network by some re-entry rule
R. The latter will keep the number of vertices in the system constant and thus allows for easy
comparison of the emerging network structures.

We define f(Gt, v) to be the degree of vertex v in Gt, and fmin to be f(Gt−1, v), i.e., the degree it
had in the previous time step. In every time step, i.e., after every removal, every vertex is allowed
to check whether its degree has decreased in comparison with the last time step, and if so, it is
allowed to rebuild its neighborhood according to some changing rule C. The model is sketched in
Fig. 6.12.

The question is now how the rules R and C should be designed to drive the network towards a
normal degree distribution in the case of attacks and in the case of random failures towards a
scale-free degree distribution or at least towards a degree distribution with a long tail to the right.
Our second goal is to achieve this while keeping the number of edges constant by replacing only
those edges that are lost due to the removal of v. To do so, the removed vertex is allowed to
re-entry the network with half the edges it had before the removal; this re-enter rule does not need
any global information since the degree of a vertex is local information that can be stored by each
of the participants and used in the re-entry process. The other half of the edges can then be used
by the old neighbors to stabilize the network structure as defined by the changing rule C. The

6. The Principle of Locality in the Evolution of Complex Networks 139

following properties of C are thus desired:

1. C is a local rule, i.e., only information about vertices within a short distance is used.

2. C holds the number of edges (expectedly) constant.

3. C drives a degree distribution towards one with a long right tail under random failures and
towards a degree distribution centered sharply around the average degree under attacks.

It is well known that the preferential attachment rule will lead to a scale-free network [21]. Unfor-
tunately, such a protocol is only applicable when a new vertex attaches to the network. However,
C should show the same the–rich–get–richer behavior inducing a right-skewed degree distribution
as a preferential attachment rule. The basic construction of C is that a neighbor w of the deleted
vertex v will build a new edge with probability 0.5. Since the removed vertex v will re-enter the
network with deg(v)/2 and the general construction of C will expectedly lead to deg(v)/2 edges,
the combination of R and C holds the number of edges expectedly constant. To make C local, the
new edge of w is built to one of w’s second neighbors z in N2(w), as was the case in the algorithms
described before. Since we want to achieve a preferential attachment–like behavior, we define a
general form of the probability Pi(z, w) of choosing a vertex z from N2(w) that depends on the
i-th power of the degree of z:

Pi(z, w) =
deg(z)i

∑

z′∈N2(w)

deg(z′)i
. (6.29)

i controls how much the degree of the vertex will influence its probability of being chosen. If i is
set to 1, this general form results in the normal preferential attachment probability as described
in [21], but restricted to the neighbors in distance 2. If i is set to 0, every neighbor in distance
2 has the same chance of being chosen. Note that the denominator has to take the given form in
order to make P+(z, w) a probability distribution. Note also that by the same argument it does
not make any sense to give vertex z a probability of k · deg(z) since such a constant would not
alter the relative probability that z is chosen, i.e., if z and z′ are in N2(w) the relative probability
of z being chosen in relation to z′ is still given by deg(z)i/deg(z′)i since k will be canceled out.

With this general form of Pi(z, w) we can now define our model by defining the re-entry rule R
and a set of changing rules Ci:

Definition of the Changing and Re-Entry Rules
Let v be the vertex that is removed from the graph. For every vertex w in N(v) build a new edge
with probability 0.5 to some vertex z in N2(w) chosen with probability Pi(z, w) as defined above.
This describes the general form of changing rule Ci. If by chance the neighbor is isolated and does
not have any neighbors in distance 2 it will be reconnected at random to the network. Re-insert
vertex v with a randomly chosen set of deg(v)/2 vertices, where deg(v) denotes the degree of v
before its removal.

We have already argued that the combination of R and any Ci will keep the number of edges
in the network expectedly constant and it is obvious that Ci considers only local information.
We will now have to argue that these rules are able to shift the degree distribution into a shape
that is appropriate for the given situation. If we start with a right-skewed degree distribution
and the network is attacked, the desired shift to the left towards a normal distribution is mainly
organized by the nature of the attack itself. Since the attacker does not allow any vertex to have a
degree much higher than average, this behavior introduces a right bound to the degree distribution.
Thus, a few attacks will drive the right-skewed degree distribution towards a more balanced, normal
distribution.

6. The Principle of Locality in the Evolution of Complex Networks 140

We will now show that in a random failure scenario a right-skewed degree distribution will emerge
because of the changing rule. To do so we will estimate E[∆(deg(w))], i.e., the expected change in
the degree of w. We assume that there is no correlation between the degree of neighbors, i.e., that
the so-called assortativity of the graph is 0 [177] and thus the graph is disassortative. Newman
has shown that the preferential attachment and the random graph model are disassortative. Thus,
by starting with a scale-free or random graph in G0 and by re-inserting vertices with a random
attachment rule, the resulting graph will still be disassortative. We will now show that neither
of the rules Ci causes assortativity of the network. Since G0 does not show any associativity we
also know that the degree of vertices in N2(w) is not correlated with the degree of w. Even if the
new target vertex z is chosen in proportion to its degree (or any higher power of it) this does not
introduce any assortativity since the degree of w is chosen uniformly at random from the set of all
vertices.

With this assumption we can now determine the probability that any vertex w will gain or lose
a new edge in a random failure scenario by determining E[∆(deg(w))]. Let P−(w) denote the
probability that w loses an edge in the following step, and let P+(w) denote the probability that
w gains an edge, then E[∆(deg(w))] = P+(w) − P−(w). P−(w) is given by 0.5 · deg(w)/n since
there are deg(w)/n ways to remove a direct neighbor of w and with probability 0.5 this edge will
not be replaced. P+(w) is harder to determine. First of all, one of the second neighbors of w has
to lose its direct neighbor. The probability for this is

∑

z∈N2(w)

deg(z)

n
(6.30)

If one of the vertices z ∈ N2(w) loses a neighbor, it will build a new edge with probability 0.5 and
choose w from its second neighbors with probability Pi(z, w). Thus, P+(w) is given by:

P+(w) =
∑

z∈N2(w)

0.5
deg(z)

n

deg(w)i

∑

z′∈N2(z)

deg(z′)i
(6.31)

Let now deg∅ denote the average degree 2m/n in the graph. We will restrict ourselves to the case
of i ∈ {0, 1} since here we can approximate

∑

z′∈N2(z) deg(z
′)i by

∑

z′∈N2(z)

deg(z′)i ≃ deg(z) · degi+1
∅ (6.32)

With this we can simplify P+(v) to:

P+(v) =
∑

z∈N2(w)

0.5
deg(w)i

n · degi+1
∅

(6.33)

= 0.5
|N2(w)|deg(w)i

n · degi+1
∅

(6.34)

= 0.5
deg(w)i+1

n · degi
∅
. (6.35)

The last equation is again derived by the approximation N2(w) ≃ deg(w) · deg∅.

6. The Principle of Locality in the Evolution of Complex Networks 141

We will now discuss the special case where i = 0. Here, the probability of gaining or loosing an
edge is the same, namely 0.5 deg(w)/n, implying that E[∆(deg(w))] = 0. This means that the
degree of each vertex makes a random walk with the same probability of increasing or decreasing.
Since the degree of a vertex cannot be below 0 this random walk is bounded from the left and
will thus create a right-skewed degree distribution. Note however that the right-shift will be very
slow. After k steps of a normal random walk, the standard deviation is

√
k. Since every vertex

will do one step in the random walk only every 1/n steps expectedly, the standard deviation will
only grow with

√

(k/n).

We will now examine changing rule C1. For Ci the expected difference in the degree of w is given
by:

E[∆(deg(w))] = 0.5
deg(w)

n

(
deg(w)

deg∅
− 1

)

(6.36)

This is an interesting equation that shows that a vertex with a degree higher than average is likely
to gain new edges while vertices with lower than average degree tend to lose edges. It is clear that
this rule should easily be able to shift the degree distribution of the network to the right.

In the following section we will show some empirical results for C0 and C1 and show which of the
rules is likely to be applicable to a real-world scenario.

6.6.2 Results

Fig. 6.13 shows that the rules given above are indeed able to change a normal degree distribution
(given by a random graph) to a right-skewed degree distribution under random failures, and that
the second changing rule in Fig. 6.13(b) changes the degree distribution more quickly into a
strongly right-skewed degree distribution.

Note that none of the changing rules can guarantee connectivity, i.e., it is possible that small
subgraphs are disconnected from the biggest connected component. With the random attachment
insertion rule it is very unlikely that large portions of the network will stay isolated for a long
time because every re-inserted vertex has a small chance of picking only vertices from the same
component. Fig. 6.14(a) shows that the percentage of vertices in the biggest connected component
does not fall below 99% with changing rule C0, and not below 98% for C1 in the random failure
scenario shown in Fig. 6.13. The evolution of the average path length in this scenario is shown
in Fig. 6.14(b). Based on these figures, rule C0 is slightly better in keeping the graph together,
but the average path length increases by approx. 4%, whereas with rule C1 there are some more
isolated vertices, but the average path length actually decreases by approx. 4%.

Fig. 6.15 shows the resulting degree distributions of a graph that suffers 5 runs composed of
one attack and one random failure series, starting with a scale-free graph or random graph with
n = 1, 000 and m = 5, 000. Every series contains 1, 000 subsequent removals of each type. It is
clearly visible that the degree distribution changes from a sharp degree distribution with a low
deviation to a right-skewed distribution and vice versa. Of course, the degree distribution itself
is just an indicator of the resulting network’s stability. We measure the stability of a network by
removing 5% of the vertices without any adjustment of the network and compute the resulting
average path length. Again, these 5% are either removed in an attack scenario or in a random
failure scenario. This stability measure is denoted by S5(G,T), where G denotes the type of graph
(RG for random graph, SF for scale-free), and T , the type of removal (A for attack, R for random
failure). For a scale-free graph with n = 1000 and m = 5000, the empirically observed S5(SF,A)
is 2.9 and S5(SF,R) is 3.8; for a random graph with n = 1000 and m = 5000, the empirically
observed S5(RG,A) is 3.4 and the S5(RG,R) is 3.2.

6. The Principle of Locality in the Evolution of Complex Networks 142

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

n
u
m

b
er

 o
f
n
o
d
es

random failures

C0

(a)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

n
u
m

b
er

 o
f
n
od

es

C1

random failures

(b)

Fig. 6.13: Evolution of the degree distribution of random graphs with n = 1000 and m = 5000 after
2000 rounds of attacks, plotted every 500 removals. (a): changing rule C0; (b): changing rule C1. Note
that the scales are different because the distributions shown below have a long tail.

6. The Principle of Locality in the Evolution of Complex Networks 143

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

0 5 10 15 20 25 30 35 40 45 50

re
la

ti
v
e

fr
ac

ti
on

 o
f
n
od

es
 i
n
 b

ig
ge

st
 c

om
p
on

en
t

time

C0

(a) C1

3.24

3.26

3.28

3.3

3.32

3.34

3.36

3.38

3.4

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

p
at

h
 l
en

gt
h

time

C0

(b) C1

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

0 5 10 15 20 25 30 35 40 45 50

re
la

ti
v
e

fr
ac

ti
on

 o
f
n
od

es
 i
n
 b

ig
ge

st
 c

om
p
on

en
t

time

C1

(c) C2

3.05

3.1

3.15

3.2

3.25

3.3

3.35

0 5 10 15 20 25 30 35 40 45 50

av
er

ag
e

p
at

h
 l
en

gt
h

time

C1

(d) C2

Fig. 6.14: (a): The percentage of vertices in the biggest connected component, and (b) the average path
length in the evolution of the graph shown in Fig. 6.13(a), i.e., under changing rule C0;(c): The percentage
of vertices in the biggest connected component, and (d) the average path length in the evolution of the
graph shown in Fig. 6.13(b), i.e., under changing rule C1.

6. The Principle of Locality in the Evolution of Complex Networks 144

R A R A R A R A R A

1

1.5

2

2.5

3

3.5

4

a
v
er

a
g
e

p
a
th

 l
en

g
th

C0
S (G,A)5

S (G,R)5

(a)

RA R A R A R A R A

1

1.5

2

2.5

3

3.5

4

av
er

ag
e

p
at

h
 l
en

gt
h

C1
S (G,A)5

S (G,R)5

(b)

1

1.5

2

2.5

3

3.5

4

-20

a
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

C0

R A R A R A R A R A

S (G,A)5

S (G,R)5

(c)

1

1.5

2

2.5

3

3.5

4

av
er

ag
e

p
at

h
 l
en

gt
h

RA R A R A R A R A

C1
S (G,A)5

S (G,R)5

(d)

Fig. 6.15: 5 runs, each of 1, 000 attacks and 1, 000 random failures, indicated by the letters A and
R. Note that for a random graph we start with a random failure scenario, and for a scale-free graph we
start with an attack scenario. The y-axis shows S5(G, A) and S5(G, R) of the resulting graphs along the
evolution. The degree distributions are shown out of scale to emphasize the correlation between a high
S5(G, A) value and a right-skewed degree distribution. All starting graphs have 1000 nodes and 5000
edges. (a): G0 = RG, C = C0. (b): G0 = SF , C = C0. (c): G0 = RG, C = C1 (d): G0 = SF ,
C = C1.

6. The Principle of Locality in the Evolution of Complex Networks 145

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

0 5 10 15 20

a
v
e
ra

g
e
 p

a
th

 l
e
n
g
th

attacks [x1000]

C , S (G,A)1 5

C ,1 S (G,R)5

C ,2 S (G,A)5

C ,2 S (G,R)5

Fig. 6.16: Evolution of S5(G, A) and S5(G, R) in a long random failure scenario with 20, 000 events.
The starting graph is a random graph with 1000 vertices and 5000 vertices.

As can be seen in Fig. 6.15, independent of the structure of the starting graph, both changing rules
C0 and C1 quickly result in network structures that show a good stability in the case of attacks,
i.e., S5(G,A) is around 3.5 after the first 200 attacks which is comparable to S5(RG,A) in a pure
random graph. Unfortunately, the emerging right-skewed degree distribution after the first 1000
random failures is not strong enough to decrease S5(G,R) below 3.4 in the case of C0 and below
3.3 in the case of C1. This value is only comparable with the stability of a pure random graph but
not with that of a pure scale-free graph. Of course, normally one can assume that random failure
phases will be much longer than attack phases. Fig. 6.16 shows S5(G,A) and S5(G,R) in the
evolution of a random graph with 1, 000 vertices and 5, 000 edges with 20, 000 random failures. It
is clear to see that also a long random failure phase does not change the behavior of the network
generated by changing rule C0, and that the resulting network is less stable than a corresponding
random graph with S5(G,A) ≃ 3.6 and S5(G,R) ≃ 3.4. However, changing rule C2 is able to
generate a network whose random failure stability S5(G,R) fluctuates around 3, with a minimum
of 2.8.

It follows from these empirical results that changing rule C0 is too weak to stabilize networks in
a random failure scenario if they do not already have a right-skewed degree distribution. But
we could show that changing rule C1 quickly stabilizes an attacked network if the vertices have
enough time to rewire the lost edges locally. Furthermore, as long as the network suffers only
random failures, the protocol re-establishes a right-skewed degree distribution that then stabilizes
the network against random failures.

In summary we have shown that a scale-free network structure is only more vulnerable to attacks
if the network is not allowed to react by building new edges to compensate for the ones that
were deleted. We have shown that simple, local rules can be implemented that stabilize the
network’s structure at nearly no communication costs. Furthermore, since these rules are local,
they stabilize the local network structure such that subsequent attacks will not enlarge the distance
between nearby vertices but only those between distant vertices. Since in most communication
networks local communication is much more probable than long-distance communication the newly
introduced stability measure coherence shows that our network protocol stabilizes networks in a
suitable way against attacks and random failures. Of course, these rules have only been shown to
work in the artificial setting described above, thus the future will have to show whether they can
help to stabilize the communication networks we work with everyday.

6. The Principle of Locality in the Evolution of Complex Networks 146

6.7 Summary

In this chapter we have shown by a proof of concept that it is possible to guide self-organized
networks in an efficient manner to build certain global network structures, although the evolution
is controlled by the myopic vertices of the evolving network that can only make local decisions.

As sketched in the introduction of this chapter there are already quite a handful of models for
dynamic and evolving graphs. Why do we think that adding another is helpful? Our model
is designed explicitly to find those local changing rules that can be implemented in real-world
technical communication networks that for various reasons have to be decentrally organized. In
peer-to-peer networks it is a political decision, in sensor networks it is a question of investment
into the system. Here we want to review briefly the main differences between our model and other
models:

1. Every vertex will evaluate only its own situation within the graph and will only try to improve
its own situation at any time step (Egoism). This is close to the game theoretic approach,
but our agents are myopic, not totally rational, and they do not have global knowledge of
the utility function of other vertices. Our model is thus restricted rational in time and
space.

2. The algorithm does not aim for minimality regarding the evaluation function f(G, v) but
only that it is low enough, i.e.,
∑

v∈V f(G, v) ≤ n · fmin (Satisfying topology). Regarding this might protect a network
from becoming overly adapted to a given environment.

3. A third aspect is that the evaluation of the network is decentralized, which can, in many cases,
reduce the number of messages to be sent over the network (Dezentralized Evaluation).
Note that we define a calculation to be decentralized if no vertex needs to know the whole
adjacency matrix for its evaluation but only its own neighborhood. Thus, all functions
that can be evaluated with a memory space of O(n) and some communication protocol are
suitable. It seems necessary to define the term decentralized very broadly because even a test
for connectedness in a network needs a flooding protocol in which all vertices participate. Of
course, the implementation of any rule will be the more interesting in a practical sense the
more ’local’ it is, i.e., the less communication has to take place in order to evaluate it (s.
Sec. 6.5).

Note that, for example, algorithms 1 and 2 can be perfectly modeled by a 1 + 1 evolutionary
algorithm (1+1 EA): this is a genetic algorithm with memory, in which the population consists of
one graph and one offspring that is a copy of the father, mutated as determined by some changing
rule. In a 1 + 1 EA the better graph of the two is then selected for the next round. Although the
general framework given above allows to construct models that could also be modeled as (1+1)EAs,
it is much more general than the family of algorithms modeled by the latter. The changing rule for
switching network structure in random failure/attack scenarios is one of the algorithms that can
be modeled with the general framework, but does not belong to the class of 1 + 1 EAs. However,
the model can be used to explore more complex and individualized changing rules in empirical
simulations, but to deduce some analytical results it seems necessary to stick to simpler rules first.

7. SUMMARY

With the dawn of complex systems science, the world has heard a number of claims of a new
science, in e.g.: “Six Degrees - The Science of a connected Age” by Watts [241], “Linked - The
New Science of Networks” by Barabási [18], or “A new kind of Science” by Wolfram [250]. It is
hard to judge whether a totally new kind of science is needed to understand complex systems, but
certainly a new kind of thinking is needed as a human being in a globalized social network:

Wir sind uns selbst vorausgeeilt, nun haben wir Mühe, uns wieder einzuholen.
Auch unsere Denkstrukturen hinken hinterher. Sie sind geprägt von Epochen, als
die Welt noch lokal und übersichtlich war oder es dem Einzelnen zumindest so schien.
Bewältigung von Komplexität gehörte nicht zu den überlebenswichtigen Erfordernissen
des Alltags. Heute jedoch sind wir ohne diese Fähigkeit verloren.1 ([94], p. 142)

One of the approaches for dealing with complexity is to reduce a complex system to a complex
network by focusing on one type of agent and one relationship, and to analyze these networks
with respect to their structures. We have reviewed many structural properties that were found
by this approach, but of course, many real–world networks and their structural properties still
puzzle us. One of these structural properties, which we can observe, but whose evolution we do
not yet know, is the tree distance distribution and its different characteristics that we have found
in real–world networks. We think that it is an important structural property that simultaneously
describes the locality and clustering of a network, and we hope that if we understand more about
network generating systems and their network generating processes, we will better understand the
significance of the backbone of a network.

Our belief in this approach can be best explained by the example of cellular automata, of which we
give some examples in Fig. 7.1. Looking at the 2D picture of cellular automata it seems that some
of them are simple to describe (Figs. 7.1(a) and 7.1(b)), and some are very complex to describe
(Figs. 7.1(c) and 7.1(d)). But basically, this is an artifact of our perception because we try to
find a 2-dimensional pattern in these pictures. All of them are produced by basically the same
simple process: every horizontal line represents the state of the system at some time, starting with
a white line with one black box in the middle of the line. The state at time i+1 is computed from
the state in i by looking at each cell and its two neighbors2. A rule assigns the resulting cell color
to each of the eight possible configurations, and this constitutes the color of all cells in the next
state3. Looking at the pictures from this perspective, it is still interesting that the same simple
process can yield such different results when viewed as 2D-pictures, but now all of them have the
same complexity because their generating process is the same.

Our idea is that the same will happen with complex networks once we find the best perspective,
and our conjecture is that this perspective is the one which focuses the network generating process.

1 We are running in front of ourselves and now it is a pain to catch up. The way we think seems to lag behind.
It has been molded by eras in which the world was local and easy to understand, at least seemingly. Mastering
complexity did not rank among the capabilities most essential for survival. Today, however, we are lost without

7. Summary 148

(a) Rule 126 (b) Rule 186 (c) Rule 30 (d) Rule 186

Fig. 7.1: Different 1-dimensional cellular automata in their timely evolution in the y-axis. The rule
number gives the assignment of each of the 8 possible configurations of three cells and the state of the
middle cell in the next time step [250].

Indeed, in the meantime some first analyses of dynamic network data have been published [254,
155, 189] that may help us to find out more about those network generating processes that build
real–world networks. One main point of this perspective is that a complex network is always
the result of its evolution in time and that thus every static snapshot holds information about
the whole process which may make it difficult to find the simple pattern of how it evolved. A
second cornerstone of this perspective is that the agency that governs the evolution of a network
is important, because we have shown that building networks between selfish agents can make the
outcome very sensitive to the applied rule. And of course, a network in which the single vertices
build the agency of evolution should not be modeled by a network generating process that requires
a central authority and vice versa.

Starting with the question of what a small–world network is we have explored the term locality in
chapter 4 and our intuition is that it constitutes the most important network generating process.
However, as we have shown in the case of the clustering coefficient, and as we have indicated for
the (k, l)-locality measure of Chung and Lu and the backbone distance distribution, this seems
to be the process that is most difficult to measure in the resulting network. We think that a
steep backbone distribution is caused by a network generating process that prefers to build local
edges, but to show a strong correlation between the structure and the process was not possible so
far. We also see a connection of the backbone distribution to clustering because a steep backbone
distribution seems to indicate that the network is clustered, but also here, a strong correlation
between the concepts is still missing. Our intuition is that analyzing the network generating
process in a network generating system might not be amenable in most cases by an analysis of the
complex network alone, but rather will need the traditional tools of the science in whose realm
they fall, i.e., sociology in social networks, or biological methods in biological networks. Still, we
think that there are many open problems that can be addressed by methods from graph theory
and other tools used in computer science:

1. In our small–world model we have given a simple analysis of the needed degree such that
a unit-disk graph will be connected with high probability, under the assumption that the
vertices are distributed uniformly at random. Our analysis yielded a minimal degree of

it.
2 The cells are considered to be cyclic, i.e., the last cell is neighbored to the first one.
3 States are encoded by binary numbers. A white cell is identified by 0, a black cell by 1. The state ’all–white’

is thus 000, black–white–white is 100, i.e., 4. The middle cell in such a configuration can either be black or
white in the next time step, thus there are 28 = 256 different rules. A rule can now be encoded by a single
binary number with eight digits, where the last digit gives the assignment to 000, the second to last gives the
assignment to 001, and so on.

7. Summary 149

5.68 log n, a bound that was improved by Xue and Kumar to 5.1774 log n, but they conjecture
the threshold should be logn [252]. This question is still open, to our knowledge.

2. We have shown in chapter 5 how the number of random edges in a hybrid graph can be
bound. So far, we have only used simple statistical methods to bound this number. The
main problem is that the second method concentrates on the question of how high ρ∗ could
be in every single tree distance class, and thus it overestimates the number of random edges
in the graph. We are sure that there are more elaborated methods to determine this bound,
and thus state this as the second open problem.

3. The question is also whether there are more network generating processes that can be detected
either in the resulting static network or in the dynamic changes of the network. Yook et al.
have shown that in the dynamic changes of the Internet’s structure, indeed those vertices
tend to acquire more new edges that already have a high degree, i.e., they found that newly
attached vertices seem to follow the preferential attachment model proposed by Barabási and
Albert [254, 21]. Can such a process still be detected if it is mixed with another one, e.g., a
random graph process, or an assortative one? In this area, we think that also impossibility
theorems would be very interesting. In our eyes, a good candidate for such an impossibility
theorem is locality as a network generating principle, but it maybe that our definition of
locality is too general to allow for such a proof. In general, we think, that the question of
what kind of network generating processes can be detected in the resulting network is of great
importance and could lead to a new understanding of the structures we find in real–world
networks.

4. As indicated in chapter 5, the runtime of some algorithms depend on Q(T) and are thus more
efficient on those real–world networks where Q(T) is in O(m log n) or even smaller. We see
several open problems here:

(a) We were astonished how simple it was for many real–world networks to find very good
spanning trees. Our intuition is that if a network has a steep tree distance distribution
this can maybe exploited to find a near–optimal one by an approximation algorithm.

(b) As we have reviewed, the runtime of some algorithms is depending on Q(T) of a given
spanning tree. So far, only those applications were looked at that are directly based
on the question of finding a spanning tree with a low Q(T). We assume that also
other problems might be more efficiently solvable in networks with a steep tree distance
distribution, e.g., the vertex cover problem or routing problems, since these kind of
problems rely on the local structure of a network.

(c) One problem that is also still open is whether the upper bound onQ(T) (and thus also on
the minimum length (fundamental) cycle base problem) can be improved to O(m log n).
This open problem was stated by Elkin et al. and is—to our knowledge—not yet solved
[73].

5. As already sketched above, it is intuitive that a steep backbone distribution should be corre-
lated with the possibility to find a partitioning of the vertices such that well-known clustering
quality measures such as the modularity introduced by Girvan and Newman is high [93]. One
open problem in this area is thus whether there is a strong correlation between a steep tree
distance distribution and the minimal modularity the optimal partition of a graph will have.
A second question is whether a good backbone can be used to find reasonable clusterings.

6. As we have sketched in chapter 5 we do not yet have a good network model that produces a
steep tree distance distribution besides the naive, hierarchical model. It would certainly be
interesting to find one or more models that generate this special structure.

7. Summary 150

7. A further open question is how the minimum length fundamental cycle base of a graph and
that of a (non–fundamental) cycle base of a graph depend on each other besides the simple
fact that the first gives an upper bound on the latter.

The open questions addressed in this list give examples of how complex systems science has opened
new fields that are interesting for computer scientists. But we see that complex systems science
could also profit from computer science: Complex systems science is interested in the question of
how the properties of a complex system emerge due to the interactions of its constituting entities.
We have now built a general framework to analyze the question of how network generating entities
can interact to build globally optimal networks, one of the many possible emergent properties of a
complex system.
In a way, the perspective of complex systems science is based on a reverse engineering approach:
an emergent property of a system is observed and then the question arises of how this property is
achieved. Computer scientists often analyze models and their capabilities to compute something
efficiently by changing parameters of the model in a subtle way to understand when and where
limiting cases emerge that make a computation difficult or impossible. We think that this approach
could be a complementary way to understand the capabilities of complex systems to build emergent
properties. In the concrete case of network formation by selfish and myopic entities, this could mean
to explore how efficient these entities can shrink the diameter (or build any other global structure
in a network) when different grades of cooperation are allowed or different ranges of locality are
assumed. We hope that this classical approach in computer science could help to understand the
limits of decentral computations (certainly one of the emergent properties of complex systems),
and could also rule out some mechanisms for the generation of a given emergent property. In this
perspective we think that the following open problems are interesting:

1. What kind of global structures in a network can be achieved by the collective behavior of
the agents? E.g., what if the network’s diameter should be decreased to a wanted value but
under different constraints such as a restricted maximal length of an edge or a restricted
degree? What about other global structures, like finding a good backbone in a decentralized
and local manner?

2. What would happen if the changes to the network happen unsynchronized, i.e., different
vertices can change the network at the same time? For our analysis it was crucial that every
vertex could make a temporary change to the network, evaluate this change, and decide
subsequently whether it is better to keep the new edge or restore the old one.

3. All game theoretic models imply that the playing entities will instantly find the equilibrium,
but our analyses have shown that if total knowledge cannot be assumed, the runtime is
strongly dependent on the concrete design of the changing rules. What would happen if
some of the entities have global knowledge? Can this be used to make the process find the
desired structure faster?

4. We have given a first (empirical) analysis of how sensitive the process is against external
events, such as the addition of new vertices to a network that tries to decrease its diameter.
Can this question be formally analyzed?

5. We have also addressed the question of how to reduce the number of edges in a sensor network
without increasing its diameter. Can it be shown that the diameter will not increased by
much w.h.p. if every vertex is chosen uniformly at random to destroy one of the triangles it
participates in?

7. Summary 151

We thus hope that this new approach to understand what complex systems can achieve in general,
by focusing on the kind of global network structures they can generate with a certain local behavior,
will help to give a theoretical basis for the understanding of emergent properties in complex systems,
and thus eventually help to unravel those patterns in real–world systems that seem to be so complex
today.

BIBLIOGRAPHY

[1] www.amazon.com, www.amazon.de.

[2] Lada Adamic and Eytan Adar. How to search
a social network. Social Networks, 27(3):187–
203, 2005.

[3] Ravindra K. Ahuja, Thomas L. Magnati, and
James B. Orlin. Network Flows: Theory, Algo-
rithms, and Applications. Prentice Hall, 1993.

[4] Réka Albert and Albert-László Barabási.
Topology of evolving networks: Local events
and universality. Physical Review Letters,
85(24):5234–5237, 2000.

[5] Réka Albert and Albert-László Barabási. Sta-
tistical mechanics of complex networks. Re-
view of Modern Physics, 74:47–97, 2002.

[6] Réka Albert, Hawoong Jeong, and Albert-
László Barabási. Error and attack tolerance of
complex networks. Nature, 406:378–382, 2000.

[7] Réka Albert and Hans G. Othmer. The topol-
ogy of the regulatory interactions predicts the
expression pattern of the drosophila segment
polarity genes. Journal of Theoretical Biolo-
gie, 223:1–18, 2003.

[8] Albert-László, Hawoong Jeong, and Réka Al-
bert. The diameter of the world wide web.
Nature, 401:130, 1999.

[9] Noga Alon, Richard M. Karp, David Peleg,
and Douglas West. A graph-theoretic game
and its application to the k-servers problem.
SIAM Journal on Computing, 24(1):78–100,
1995.

[10] Lúıs A. Nunes Amaral, A. Scala, Marc
Barthélémy, and H.E. Stanley. Classes of
small-world networks. Proceedings of the Na-
tional Academy of Science, 97:11149–11152,
2000.

[11] Reid Andersen, Fan Chung, and Lincoln Lu.
Analyzing the small world phenomenon using
a hybrid model with local network flow. In
Proceedings of the WAW 2004, LNCS 3243,
2004.

[12] Reid Andersen, Fan Chung, and Linyuan Lu.
Drawing power law graphs. In Proceedings
of the 12th Symposium on Graph Drawing
(GD’04), 2004.

[13] Jacob M. Anthonisse. The rush in a directed
graph. Technical report, Stichting Mathema-
tisch Centrum, 2e Boerhaavestraat 49 Ams-
terdam, 1971.

[14] Yael Artzy-Randrup, Sarel J. Fleishman, Nir
Ben-Tal, and Lewi Stone. Comment on ”net-
work motifs: Simple building blocks of com-
plex networks ” and ”superfamilies of evolved
and designed networks”. Science, 305:1107c,
2004.

[15] Venkatesh Bala and Sanjeev Goyal. A
noncooperative model of network formation.
Econometria, 68(5):1181–1229, 2000.

[16] Philip Ball. Critical Mass. Arrow Books Ltd,
London, 2005.

[17] Yaneer Bar-Yam. Dynamics of Complex Sys-
tems. Westview Press (Perseus Books Group,
Boulder, Colorado, USA), 1997.

[18] Albert-László Barabási. Linked - The New
Science of Network. Perseus, Cambridge MA,
2002.

[19] Albert-László Barabási. Network theory - the
emergence of the creative enterprise. Science,
308:639–641, 2005.

[20] Albert-László Barabási. Taming complexity.
Nature Physics, 1:68–70, 2005.

[21] Albert-László Barabási and Réka Albert.
Emergence of scaling in random networks. Sci-
ence, 286(5439):509–512, 1999.

[22] Albert-László Barabási, Hawoong Jeong,
Erzsébet Ravasz, A. Schubert, and Tamás Vic-
sek. Evolution of the social network of scien-
tific collaborations. preprint at arXiv: cond-
mat/0104162, April 2001.

[23] David Barkai. Peer-to-Peer Computing. Intel
Press, 2002.

[24] Alain Barrat and M. Weigt. On the proper-
ties of small-world networks. The European
Physical Journal B, 13:547–560, 2000.

[25] Marc Bartheélémy and Lúıs A. Nunes Ama-
ral. Small-world networks: Evidence for a
crossover picture. The American Physical So-
ciety, 82(15):3180–3183, 1999.

7. Summary 153

[26] Marc Barthélemy. Crossover from scale-free
to spatial networks. arXiv:cond-mat/0212086,
Feb 2003.

[27] Michael Baur and Ulrik Brandes. Crossing re-
duction in circular layouts. In Proceedings of
the 30th Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG’04), 2004.

[28] Alex Bavelas. A mathematical model for
group structures. Human Organizations, 7:16–
30, 1948.

[29] Peter S. Bearman, James Moody, and Kather-
ine Stovel. Chains of affection: The struc-
ture of adolescent romantic and sexual net-
works. American Journal of Sociology, 110:44–
91, 2004.

[30] Franziska Berger, Peter Gritzmann, and Sven
de Vries. Minimum cycle bases for network
graphs. Algorithmica, 40:51–62, 2004.

[31] Ginestra Bianconi and Albert-László
Barabási. Competition and multiscaling
in evolving networks. Europhysics Letters,
54(4):436–442, 2001.

[32] Bé Bollobás and Fan Chung. The diameter of a
cycle plus a random matching. SIAM Journal
on Discrete Mathematics, 1:328–333, 1998.

[33] Béla Bollobás. Modern Graph Theory.
Springer Verlag, Heidelberg, Germany, 1998.

[34] Béla Bollobás. Random Graphs. Cambridge
Studies in Advanced Mathematics 73. Cam-
bridge University Press, London, 2nd edition,
2001.

[35] Béla Bollobás and Oliver M. Riordan. Hand-
book of Graphs and Networks, chapter Math-
ematical results on scale-free random graphs,
pages 1–34. Springer Verlag, Heidelberg, 2003.

[36] Eric Bonabeau, Marco Dorigo, and Guy Ther-
aulaz. Swarm Intelligence. Santa Fe Institue,
New Mexiko, USA, 1999.

[37] Stephen P. Borgatti. Centrality and network
flow. Social Networks, 27:55–71, 2005.

[38] Stefan Bornholdt. Less is more in modeling
large genetic networks. Science, 310:449–451,
2005.

[39] Stefan Bornholdt and Thimo Rohlf. Topolog-
ical evolution of dynamical networks: Global
criticality from local dynamics. Physical Re-
view Letters, 84(26):6114–6117, 2000.

[40] Stefan Bornholdt and Kim Sneppen. Robust-
ness as an evolutionary principle. Proceedings
of the Royal Society of London B, 267:2281–
2286, 2000.

[41] Ulrik Brandes and Thomas Erlebach, editors.
Network Analysis - Methodological Founda-
tions. Springer Verlag, 2005.

[42] Pierre Bremaud. Markov Chains - Gibbs
Field, Monte Carlo Simulation, and Queues.
Springer Verlag, 1999.

[43] Heinz Breu and David G. Kirkpatrick. Unit
disk graph recognition is np-hard. Compu-
tational Geometry. Theory and Applications,
9(1-2):3–24, 1998.

[44] Sergey Brin and Lawrence Page. The anatomy
of a large-scale hypertextual web search en-
gine. Computer Networks and ISDN Systems,
30(1-7):107–117, 1998.

[45] Andrei Broder. Generating random spanning
trees. In Proceedings of the 30th Annual Sym-
posium of Foundations of Computer Science,
1989.

[46] Andrei Broder, Ravi Kumar, Farzin Maghoul,
Prabhakar Raghavan, Sridhar Rajagopalan,
Raymie Stat, Andrew Tomkins, and Janet
Wiener. Graph structure in the web. Com-
puter Networks, 33:309–320, 2000.

[47] Erik Buchmann and Klemens Böhm. FairNet
- how to counter free riding in peer-to-peer
data structures. In Proceedings of Cooperative
Information System (CoopIS), 2004.

[48] Scott Camazine, Jean-Louis Deneubourg,
Nigel R. Franks, James Sneyd, Guy Ther-
aulaz, and Eric Bonabeau. Self–Organization
in Biological Systems. Princeton Studies in
Complexity, 2003.

[49] Jean Carle and David Simplot-Ryl. Energy-
efficient area monitoring for sensor networks.
Computer, pages 40–46, 2004.

[50] Jeromy Carriére and Rick Kazman. Inter-
acting with huge hierarchies: Beyond cone
trees. In Proceedings of the ACM conference
on Information Visualization 1995, pages 74–
81, 1995.

[51] Julien Cartigny, Francois Ingelrest, David
Simplot-Ryl, and Ivan Stojmenović. Local-
ized LMST and RNG based minimum-energy
broadcast protocols in ad hoc networks. Ad
Hoc Networks, 3:1–16, 2003.

[52] Fan Chung and Linyuan Lu. The average dis-
tances in random graphs with given expected
degrees. PNAS, 99(25):15879–15882, 2002.

[53] Fan Chung and Linyuan Lu. The small world
phenomenon in hybrid power law graphs. In

7. Summary 154

Complex Networks (E. Ben-Naim, H. Frauen-
felder, Z. Toroczkai (eds.)), pages 91–106,
2004.

[54] Aaron Clauset. Finding local community
structure in networks. Physical Review E,
72:026132, 2005.

[55] Aaron Clauset, Mark E.J. Newman, and
Christopher Moore. Finding community struc-
ture in very large networks. Physical Review
E, 70:066111, 2004.

[56] Colin Cooper, Ralf Klasing, and Michele Zito.
Lower bounds and algorithms for dominating
sets in web graphs. Internet Mathematics,
2(3):275–300, 2005.

[57] Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, and Clifford Stein. Intro-
duction to Algorithms. MIT Press, 2003.

[58] Charles R. Darwin. The origin of species,
1859.

[59] Jörn Davidsen, Holger Ebel, and Stefan Born-
holdt. Emergence of a small world from lo-
cal interactions: Modeling acquaintance net-
works. Physical Review Letters, 88:128701,
2002.

[60] Derek J. de Solla Price. Networks of scientific
papers. Science, 149:510–515, 1965.

[61] Narsingh Deo, Gurpur Madhav Prabhu, and
M.S. Krishnamoorthy. Algorithms for generat-
ing fundamental cycles in a graph. Journal on
Transactions on Mathematical Software, 8:28–
42, 1982.

[62] Imre Derényi, Gergely Palla, and Tamás Vic-
sek. Clique percolation in random networks.
Phys. Rev. Lett., 94:160202, 2005.

[63] Guiseppe DiBattista, P. Francesco Cortese,
Francesco Frati, Luca Grilli, Katharina A.
Lehmann, Guiseppe Liotta, Maurizio Patrig-
ani, Ian Tollis, and Francesco Trotta. On the
topologies of local minimum spanning trees. In
Proceedings of the 3rd Workshop on Combina-
torial and Algorithmic Aspects of Networking
(CAAN’06), Chester, UK, 2006.

[64] Reinhard Diestel. Graphentheorie. Springer
Verlag, 2000.

[65] Peter Sheridan Dodds, Roby Muhamad, and
Duncan J. Watts. An experimental study
of search in global social networks. Science,
301:827–829, 2003.

[66] Peter Sheridan Dodds, Duncan J. Watts, and
Mark E. J. Newman. Identity and search in
social networks. Science, 296:1302–1305, 2002.

[67] Dietrich Dörner. Die Logik des Misslingens
- Strategisches Denken in komplexen Situa-
tionen. Rowohlt Taschenbuch Verlag GmbH,
Reinbek bei Hamburg, 1992 (15th edition).

[68] Sergei N. Dorogovtsev and Jose F.F. Mendes.
Exactly solvable analogy of small-world net-
works. Europhys. Lett., 50:1–7, 2000.

[69] Sergei N. Dorogovtsev and Jose F.F. Mendes.
Evolution of Networks. Oxford University
Press, 2003.

[70] Holger Ebel and Stefan Bornholdt. Evolution-
ary games and the emergence of complex net-
works. arXiv: cond-mat/0211666, November
2002.

[71] Holger Ebel, Jrn Davidsen, and Stefan Born-
holdt. Dynamics of social networks. Complex-
ity, 8(2):24–27, 2003.

[72] Holger Ebel, Lutz-Ingo Mielsch, and Stefan
Bornholdt. Scale-free topology of e-mail net-
works. Physical Review E, 66:035103(R), 2002.

[73] Michael Elkin, Yuval Emek, Daniel A. Spiel-
man, and Shang-Hua Teng. Lower-stretch
spanning trees. In Proceedings of STOC’05,
2005.

[74] David Eppstein, Michael S. Paterson, and
Frances F. Yao. On nearest-neighbor
graphs. Discrete & Computational Geometry,
17(3):263–282, 1997.

[75] David Eppstein and Frances F. Yao. On
nearest-neighbor graphs. In Proceedings of the
19th International Colloquium on Automata,
Languages, and Programming, volume 623 of
LNCS, pages 416–426, 1992.

[76] Paul Erdős and Alfréd Rényi. On the evo-
lution of random graphs. Publ. Math. Inst.
Hung. Acad. Sci., 5:17–61, 1960.

[77] Leonhard Euler. Solutio problematis ad ge-
ometriam situs pertinentis. Commentarii
Academiae Scientiarum Imperialis Petropoli-
tanae, 8:128–140, 1752.

[78] Tim S. Evans. Complex networks. EUR PHYS
J B, 56:65–69, 2004.

[79] Alex Fabrikant, Ankur Luthra, Elitza
Maneva, Christos H. Papadimitriou, and
Scott Shenker. On a network creation game.
In Proceedings of the 22nd ACM Symposium
on Principles of Distributed Computing, 2003.

[80] Michalis Faloutsos, Petros Faloutsos, and
Christos Faloutsos. On power-law relation-
ships of the internet topology. Computer Com-
munications Review, 29:251–262, 1999.

7. Summary 155

[81] Illés Farkas, Imre Derényi, Albert-László
Barabási, and Tamás Vicsek. Spectra of ”real-
world” graphs: Beyond the semicircle law.
The American Physical Society, 64:026704,
2001.

[82] Jean-Daniel Fekete, David Wang, Niem Dang,
Aleks Aris, and Catherine Plaisant. Overlay-
ing graph links on treemaps. In Proceedings of
the IEEE Symposium on Information Visual-
ization (InfoVis’03), 2003.

[83] Sandor P. Fekete, Michael Kaufmann, Alexan-
der Kröller, and Katharina A. Lehmann. A
new approach for boundary recognition in ge-
ometric sensor networks. In Proceedings of the
17th Canadian Conference on Computational
Geometry, 2005.

[84] David A. Fell and Andreas Wagner. The small
world of metabolism. Nature Biotechnology,
18:1121–1122, 2000.

[85] David A. Fell and Andreas Wagner. The small
world of metabolism. Nature Biotechnology,
18:1121–1122, 2000.

[86] L.J. Fogel, A.J. Owens, and M.J. Walsh. Ar-
tificial Intelligence through Simulated Evolu-
tion. Wiley, 1966.

[87] Linton Clarke Freeman. A set of measures of
centrality based upon betweenness. Sociome-
try, 40:35–41, 1977.

[88] Koen Frenken and Frank G. van Oort. The
geography of research collaboration in US
aerospace engineering and US biotechnology
& applied microbiology. In Conference of the
Regional Studies Association, 2003.

[89] Marco Gaertler. Network Analysis: Method-
ological Foundations, chapter Clustering,
pages 178–215. Springer-Verlag, 2005.

[90] Michael T. Gastner and Mark E.J. New-
man. Shape and efficiency in spatial distribu-
tion networks. Journal of Statistical Mechan-
ics: Theory and Experiment, page P01015,
September 2004.

[91] E. N. Gilbert. Random graphs. Anual Math.
Statist., 30:1141–1144, 1959.

[92] Herbert Gintis. Game Theory Evolving.
Princeton University Press, Princeton, New
Jersey, 2000.

[93] Michelle Girvan and Mark E.J. Newman.
Community structure in social and biologi-
cal networks. Proceedings of the National
Academy of Sciences, 99:7821–7826, 2002.

[94] Michael Gleich. The Web of Life. Hoffmann
und Campe Verlag, Hamburg, 2002.

[95] K.-I. Goh, B. Kahng, and D. Kim. Universal
behavior of load distribution in scale-free net-
works. Physical Review Letter, 87(27):278701,
2001.

[96] Martin Golumbic and Ann Trenk. Tolerance
Graphs. Cambridge University Press, 2004.

[97] M.C. Gőpfert and D. Robert. The web of
human sexual contacts. Nature, 411:907–908,
2001.

[98] Stephen J. Gould. The Structure of Evolution-
ary Theory. The Belknap Press of Harvard
University Press, 2002.

[99] R. Govindan and H. Tangmunarunkit. In Pro-
ceedings of the IEEE INFOCOM’00, Tel Aviv,
pages 1371–1380, 2000.

[100] A. Grama, G. Karypis, V. Kumar, and
A. Gupta. An Introduction to Parallel Com-
puting. Addison Wesley, 2003.

[101] Jonathan L. Gross and Jay Yellen. Handbook
of Graph Theory. CRC Press, 2004.

[102] Jonathan L. Gross and Jay Yellen. Hand-
book of Graph Theory (Jonathan L. Gross and
Jay Yellen (Eds.)), chapter Introduction to
Graphs, pages 1–55. CRC Press, 2004.

[103] Jonathan L. Gross and Jay Yellen. Graph
Theory and Its Applications. Chapman &
Hall/CRC, 2006.

[104] David Hartvigsen and Eitan Zemel. Is every
cycle basis fundamental? Journal of Graph
Theory, 13(1):117–137, 1989.

[105] Wolfgang Hennig. Genetik. Springer Verlag,
Heidelberg, 1995.

[106] Ivan Herman, Guy Melancon, Maurice M.
Ruiter, and Maylis Delest. Latour – a tree
visualization system. In Proceedings of the 7th
International Symposion on Graph Drawing,
pages 392–399, 1999.

[107] J. Holland. Adaptation in Natural and Artif-
ical Systems. Ann Arbor: The University of
Michigan Press, 1975.

[108] Petter Holme. Congestion and centrality in
traffic flow on complex networks. Advances in
Complex Systems, 6:163, 2003.

[109] J.D. Horton. A polynomial–time algorithm to
find the shortest cycle basis of a graph. SIAM
J. Comput., 16:359–366, 1987.

7. Summary 156

[110] http://www.yworks.com/en/products yfiles
about.html.

[111] Wilfried Imrich and Peter F. Stadler. Min-
imum cycle bases of product graphs. Aus-
tralasian Journal of Combinatorics, 26:233–
244, 2002.

[112] François Ingelrest, David Simplot-Ryl, and
Ivan Stojmenović. Resource Management in
Wireless Networking, chapter Energy-Efficient
Broadcasting in Wireless Mobile Ad Hoc Net-
works. Kluwer Academic Publishers, 2004.

[113] Riko Jacob, Dirk Koschützki, Katharina A.
Lehmann, Leon Peeters, and Dagmar
Tenfelde-Podehl. Network Analysis - Method-
ological Foundations, chapter Algorithms for
Centrality Indices. Springer Verlag, 2005.

[114] S. Janson. Asymptotic degree distribution in
random recursive trees. Random Structures
and Algorithms, 26(1–2):69–83, 2005.

[115] Henrik Jeldtoft Jensen. Self-Organized Crit-
icality. Cambridge University Press, Cam-
bridge, UK, 1998.

[116] H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai,
and A.-L. Barabsi. The large-scale organiza-
tion of metabolic networks. Nature, 400:107,
2000.

[117] Emily M. Jin, Michelle Girvan, and Mark E.J.
Newman. The structure of growing social net-
works. Physical Reviews E, 64:046132, 2001.

[118] Michael Kaufmann, Jan Kratochv́ıl, Katha-
rina A. Lehmann, and Amarendran Subrama-
nian. Max-tolerance graphs as intersection
graphs: Cliques, cylces, and recognition. In
Proceedings of the 17th ACM Symposium on
Discrete Algorithms (SODA’06), 2006.

[119] Michael Kaufmann, Katharina A. Lehmann,
and Andreas Gerasch. Area-optimal hv-like
tree drawings with a fixed aspect ratio. In
Proceedings of the 31st Conference on Current
Trends in Theory and Practice of Computer
Science, 2005.

[120] Michael Kaufmann, Katharina A. Lehmann,
and Hendrik Post. On small-world generating
models. In Proceedings of the 2nd European
Conference on Complex Systems (ECCS’05),
2005.

[121] D. Kent. The Rise of the Medici: Faction in
Florence. Oxford University Press, 1978.

[122] Pedram Keyani, Brian Larson, and Muthuku-
mar Senthil. Web Engineering and Peer-
to-Peer Computing: NETWORKING 2002,

chapter Peer Pressure: Distributed Recovery
from Attacks in Peer-to-Peer Systems, pages
306–320. Springer Berlin/Heidelberg, 2002.

[123] G. Kirchhoff. Über die Auflösung der Gle-
ichungen, auf welche man bei der Unter-
suchung der linearen Vertheilung galvanischer
Ströme geführt wird. Annalen der Physikalis-
chen Chemie, 72(12):497–508, 1847.

[124] Jon Kleinberg. Authoritative sources in a hy-
perlinked environment. Journal of the ACM,
46(5):604–632, 1999.

[125] Jon Kleinberg. Navigation in a small world.
Nature, 406:845, 2000.

[126] Jon Kleinberg. The small-world phenomenon:
An algorithmic perspective. In Proceedings of
the 32nd ACM Symposium on Theory of Com-
puting, 2000.

[127] Jon Kleinberg. Small–world phenomena and
the dynamics of information. In Proceedings
of the 13th Advances in Neural Information
Processing Systems, 2001.

[128] J. S. Kleinfeld. The small world problem. So-
ciety, 39:61–66, Jan.-Feb. 2002.

[129] Konstantin Klemm and Vı́ctor Egúıluz.
Highly clustered scale-free networks. Physical
Review E, 65:036123, 2002.

[130] Donald Ervin Knuth. The Art of Computer
Programming, volume 1. Addison Wesley, 3rd
edition, 1997.

[131] Christof Koch and Gilles Laurent. Complexity
and the nervous system. Science, 284:96–98,
1999.

[132] Dirk Koschützki, Katharina A. Lehmann,
Leon Peeters, Stefan Richter, Dagmar
Tenfelde-Podehl, and Oliver Zlotowski. Net-
work Analysis - Methodological Foundations,
chapter Centrality Indices. Springer Verlag,
2005.

[133] Dirk Koschützki, Katharina A. Lehmann,
Dagmar Tenfelde-Podehl, and Oliver Zlo-
towski. Network Analysis - Methodologi-
cal Foundations, chapter Advanced Centrality
Concepts. Springer Verlag, 2005.

[134] D. Krackhardt. Cognitive social structures.
Social Networks, 9:109–134, 1987.

[135] Valdis Krebs. The social life of books.
http://www.orgnet.com/booknet.html.

[136] Thomas Kropf. Introduction to Formal Hard-
ware Verification. Springer Verlag, Heidel-
berg, 1998.

7. Summary 157

[137] M. Kuba and A. Panholzer. On the degree
distribution of nodes in increasing trees. Jour-
nal of Combinatorial Theory, Series A (to ap-
pear), 2006.

[138] F. Kuhn, T. Moscibroda, and Roger Watten-
hofer. Unit disk graph approximation. In Pro-
ceedings of the DIALM-POMSC’04, 2004.

[139] Marcelo Kuperman and Guillermo Abram-
son. Small world effect in an epidemiological
model. Physical Review Letters, 86(13):2909–
2912, 2001.

[140] Olaf Landsiedel, Klaus Wehrle, and Katha-
rina A. Lehmann. T-DHT: Topology based
distributed hash tables. In Proceedings
of the 5th International IEEE Conference
on Peer-to-Peer-Computing, Konstanz, Ger-
many, 2005.

[141] Michael Lappe and Liisa Holm. Unravel-
ling protein interaction networks with near-
optimal efficiency. Nature Biotechnology,
22:98–103, 2004.

[142] Katharina A. Lehmann. Why simulating evo-
lutionary processes is just as interesting as
applying them. In Proceedings of the Ge-
netic and Evolutionary Computation Confer-
ence (GECCO’05), 2005.

[143] Katharina A. Lehmann. The structure of real-
world sat-problems. Master’s thesis, Univer-
sity of Tübingen, 2006.

[144] Katharina A. Lehmann and Michael Kauf-
mann. Decentralized algorithms for evaluat-
ing centrality in complex network. Technical
report, Technical Report of the Wilhelm-
Schickard-Institute, University Tübingen,
WSI-2003-10, ISSN 0946-3852, 2003.

[145] Katharina A. Lehmann and Michael Kauf-
mann. Evolutionary algorithms for the self-
organized evolution of networks. In Proceed-
ings of the Genetic and Evolutionary Compu-
tation Conference (GECCO’05), 2005.

[146] Katharina A. Lehmann and Michael Kauf-
mann. Peer-to-Peer Systems and Applica-
tions, chapter Random Graphs, Small Worlds,
and Scale-Free Networks. Springer Verlag,
2005.

[147] Katharina A. Lehmann, Michael Kaufmann,
Stephan Steigele, and Kay Nieselt. On the
maximal cliques in c-max tolerance graphs
and their application in clustering molecular
sequences. Algorithms for Molecular Biology,
1:9, 2006.

[148] Katharina A. Lehmann and Stephan Kot-
tler. Visualizing large and complex networks.
Technical Report WSI–2006–06, ISSN 0946–
4852, Wilhelm-Schickard-Institute, University
of Tuebingen, 2006.

[149] Katharina A. Lehmann and Stephan Kottler.
Visualizing large and complex networks. In
Proceedings of the 14th International Sympo-
sium on Graph Drawing (GD’06), 2007.

[150] Katharina A. Lehmann, Hendrik Post, and
Michael Kaufmann. On small-world generat-
ing models. Technical report, Technical Re-
port of the Wilhelm-Schickard-Institute, Uni-
versity Tübingen, WSI-2005-17, ISSN 0946-
3852, 2005.

[151] Katharina A. Lehmann, Hendrik D. Post, and
Michael Kaufmann. Hybrid graphs as a frame-
work for the small-world effect. Physical Re-
view E, 73:056108, 2006.

[152] Ronny Lempel and Shlomo Moran. The
stochastic approach for link structure anal-
ysis (SALSA) and the TKC effect. Com-
puter Networks: The International Journal of
Computer and Telecommunications Network-
ing, 33:387–401, 2000.

[153] Ronny Lempel and Shlomo Moran. The
stochastic approach for link-structure anal-
ysis (SALSA) and the TKC effect. Com-
puter Networks: The International Journal of
COmputer and Telecommunication Network-
ing, 33:387–401, 2000.

[154] Thomas Lengauer. Combinatorial Algorithms
for Integrated Circuit Layout. Teubner Verlag,
1997.

[155] J. Leskovec, Jon Kleinberg, and Christos
Faloutsos. Graphs over time: Densification
laws, shrinking diameters, and possible ex-
planations. In Proceedings of the 11th ACM
SIGKDD, 2005.

[156] Roger Lewin. Complexity. The University of
Chigaco Press, 1999.

[157] Josef Leypold and Peter F. Stadler. Minimal
cycle bases of outerplanar graphs. Technical
report, Department of Applied Statistics and
Data Processing, Wirschaftsunversität Wien,
1998.

[158] N. Li, J. Hou, and L. Sha. Design and anal-
ysis of an MST-based topology control algo-
rithm. In Proceedings of the IEEE INFO-
COM’03, 2003.

7. Summary 158

[159] C. Liebchen and R. Möhring. A case study
in periodic timetabling. In Proceedings of AT-
MOS, 2002.

[160] Fredrik Liljeros. Sexual networks in contem-
porary western societies. Physica A, 338:238–
245, 2004.

[161] Fredrik Liljeros, Christofer R. Edling, Lúıs
A. Nunes Amaral, H. Eugene Stanley, and
Yvonne Åberg. The web of human sexual con-
tacts. Nature, 411:907–908, 2001.

[162] Georg Löffler and Petro E. Petrides. Bio-
chemie und Pathobiochemie. Springer Verlag,
1990 (5th edition).

[163] Peter Mahlmann and Christian Schindel-
hauer. Peer-to-peer networks based on ran-
dom transformations of connected regular
undirected graphs. In 17th ACM Symposium
on Parallelism in Algorithms and Architec-
tures, 2005.

[164] H.M. Mahmoud. Limiting distributions for
path lengths in recursive trees. Probability in
the Engineering and Informational Sciences,
5:53–59, 1991.

[165] Stanley Milgram. The small world problem.
Psychology Today, 1:61–67, 1967.

[166] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and Uri Alon. Network motifs:
Simple building blocks of complex networks.
Science, 298:824–827, 2002.

[167] Ron Milo, Shalev Itzkovitz, Nadav Kashtan,
Reuven Levitt, and Uri Alon. Response to
comment on ”network motifs: Simple building
blocks of complex networks ” and ”superfam-
ilies of evolved and designed networks”. Sci-
ence, 305:1107d, 2004.

[168] Ron Milo, Shalev Itzkovitz, Nadav Kashtan,
Reuven Levitt, Shai Shen-Orr, Inbal Ayzensh-
tat, Michal Sheffer, and Uri Alon. Superfami-
lies of evolved and designed networks. Science,
303:1538–1542, 2004.

[169] Melanie Mitchell. An Introduction to Genetic
Algorithms. The MIT Press, 1997 (3rd print-
ing).

[170] J.W. Moon. The distance between nodes in
recursive trees. London Mathematical Society
Lecture Notes Series, 13:125–132, 1974.

[171] Roger B. Myerson. Game Theory: Analysis
of Conflict. Harvard University Press, Cam-
bridge, 1991.

[172] Giri Narasimhan and Michiel Smid. Geomet-
ric Spanner Networks. Cambridge University
Press, 2007.

[173] M. Newman. Models of the small world: A re-
view. Journal of Statistical Physics, 101:819–
841, 2000.

[174] M. E. J. Newman and D. J. Watts. Scaling and
percolation in the small-world network model.
Phys. Rev. E, 60:7332–7342, 1999.

[175] Mark E. J. Newman and Duncan J. Watts.
Renormalization group analysis of the small-
world network model. Phys. Lett. A, 263:341–
346, 1999.

[176] Mark E.J. Newman. The structure of scientific
collaboration networks. Proceedings of the Na-
tional Academy of Sciences, USA, 98(2):404–
409, 2001.

[177] Mark E.J. Newman. Assortative mixing in
networks. Physical Review Letters, 89:208701,
2002.

[178] Mark E.J. Newman. The structure and func-
tion of networks. Computer Physics Commu-
nication, 147:40–45, 2002.

[179] Mark E.J. Newman. Fast algorithm for detect-
ing community structure in networks. Phys.
Rev. E, 69:066133, 2004.

[180] Mark E.J. Newman. Modularity and com-
munity structure in networks. Proceedings of
the National Academy of Sciences of the USA,
103:8577–8582, 2006.

[181] Mark E.J. Newman, Albert-László Barabási,
and Duncan J. Watts, editors. The Structure
and Dynamics of Networks. Princeton Univer-
sity Press, Princeton and Oxford, 2006.

[182] Mark E.J. Newman, Steven H. Strogatz, and
Duncan J. Watts. Random graphs with ar-
bitrary degree distributions and their applica-
tions. Physical Review E, 64:026118, 2001.

[183] James R. Norris. Markov Chains. Cambridge:
Cambridge University Press, 1997.

[184] Open Network of Excellence in Complex Sys-
tems. Living roadmap for complex systems sci-
ence (version 1.22). http://www.once-cs.net,
March 2006.

[185] S. Ohno. Evolution by Gene Duplication.
Springer Verlag, Berlin, 1970.

[186] Martin J. Osborne and Ariel Rubinstein. A
Course in Game Theory. The MIT Press,
Cambridge Massachusetts, 1994.

7. Summary 159

[187] Lawrence Page, Sergey Brin, Rajeev Mot-
wani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web.
Manuscript, 1999.

[188] G. Palla, I. Derényi, I. Farkas, and T. Vic-
sek. Uncovering the overlapping community
structure of complex networks in nature and
society. Nature, 435:814, 2005.

[189] Gergely Palla, Albert-László Barabási, and
Tamás Vicsek. Quantifying social group evo-
lution. Nature, 446:664–667, 2007.

[190] Julia K. Parrish and Leah Edelstein-Keshet.
Complexity, pattern, and evolutionary trade-
offs in animal aggregation. Science, 284:99–
101, 1999.

[191] Romualdo Pastor-Satorras and Alessandro
Vespignani. Epidemic spreading in scale-
free networks. Physical Review Letters,
86(4):3200–3203, 2001.

[192] Romualdo Pastor-Satorras and Alessandro
Vespignani. Handbook of Graphs and Net-
works: From the Genome to the Internet,
chapter Epidemics and Immunization in Scale-
Free Networks. Wiley-VCH, Berlin, 2002.

[193] Keith Paton. An algorithm for finding a fun-
damental set of cycles of a graph. Communi-
cation of the ACM, 12(9):514–518, 1969.

[194] David Peleg. Distributed Computing - A Local-
ity Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications, 2000.

[195] David Peleg and E. Reshef. Deterministic
polylogarithmic approximation for minimum
communication spanning trees. In Proceedings
of the 25th International Colloquium on Au-
tomata, Languages, and Programming, 1998.

[196] David Peleg and A. Schäffer. Graph spanners.
Journal of Graph Theory, 13:99–116, 1989.

[197] Matthew Penrose. Random Geometric
Graphs. Oxford Studies in Probability, 2003.

[198] Karl R. Popper. Conjecture and Refutations.
Routledge and Kegan Paul, 2nd edition, 1965.

[199] N. Pržulj, D.G. Corneil, and I. Jurisica. Mod-
eling interactome: Scale-free or geometric?
Bioinformatics, 20(18):3508–3515, 2004.

[200] Günther R. Raidl and Bryant A. Julstrom.
Edge-sets: An effective evolutionary coding of
spanning trees. Technical Report TR-186-1-
01-01, Technische Universität Wien - Institut
für Computergraphik and Algorithmen, 2002.

[201] E. Ravasz, A.L. Somera, D.A. Mongru, Z.N.
Oltvai, and A.-L. Barabási. Hierarchical orga-
nization of modularity in metabolic networks.
Science, 297:1551–1553, 2002.

[202] Ingo Rechenberg. Evolutionsstrategie: Op-
timierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Fromman-
Holzoog, 1973.

[203] Jörg Reichardt and Stefan Bornholdt. Par-
titioning and modularity of graphs with
arbitrary degree distribution. arXiv:cond-
mat/0606295, Juni 2006.

[204] Jörg Reichardt and Stefan Bornholdt. When
are networks truly modular? arXiv:cond-
mat/0606220, Juni 2006.

[205] Michael R.Garey and David S. Johnson. Com-
puters and Intractability - A Guide to the The-
ory of NP-Completeness. W.H. Freeman and
Company, New York, 1979.

[206] M. Ripeanu and I. Foster. Mapping the
gnutella network: Macroscopic properties of
large-scale peer-to-peer networks. In Pro-
ceedings of the 1st International Workshop
on Peer-to-Peer Systems and Implications for
System Design, 2002.

[207] Arturo Rosenblueth and Norbert Wiener. The
role of models in science. Philosophy of Sci-
ence, 12(4):316–321, 1945.

[208] Gert Sabidussi. The centrality index of a
graph. Psychometrika, 31:581–603, 1966.

[209] S. Saroiu, K. Gummadi, and S. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Com-
puting and Networks, 2002.

[210] J. Scharnow, K. Tinnefeld, and Ingo Wegener.
The analysis of evolutionary algorithms on
sorting and shortest paths problems. Jour-
nal of Mathematical Modeling and Algorithms,
4(3):349–366, 2004.

[211] Anne Margarete Schwahn. Minimum funda-
mental cut basis problem. Master’s thesis,
Technical University of Kaiserslautern, 2005.

[212] Alfonso Shimbel. Structural parameters of
communication networks. Bulletin of Math-
ematical Biophysics, 15:501–507, 1953.

[213] Horst Siebert. Der Kobra-Effekt. Piper,
München Zürich, 2003.

[214] Brian Skyrms and Robin Pemantle. A dy-
namic model of social network formation. Pro-
ceedings of the National Academy of Science of
the USA, 97(16):9340–9346, 2000.

7. Summary 160

[215] Reginal D. Smith. The network of collabora-
tion among rappers and its community struc-
ture. Journal of Statistical Mechanics: Theory
and Experiment, page P02006, 2005.

[216] Tom A.B. Snijders. Sociological Methodology,
chapter The Statistical Evaluation of Social
Network Dynamics, pages 361–395. Boston
and London: Basil Blackwell, 2001.

[217] Tom A.B. Snijders. Markov chain monte carlo
estimation of exponential random graph mod-
els. Journal of Social Structure, 3(2), 2002.

[218] Tom A.B. Snijders. Models and Methods in
Social Network Analysis, chapter Models for
Longitudinal Network Data, pages 215–247.
Cambridge University Press, New York, 2005.

[219] Ricard V. Solé, Romualdo Pastor-Satorras,
Eric Smith, and Thomas B. Kepler. A model
of large-scale proteome evolution. Advances in
Complex Systems, 5:43–54, 2002.

[220] Ray Solomon and Anatol Rapoport. Connec-
tivity of random nets. Bulletin of Mathemati-
cal Biophysics, 13:107–117, 1951.

[221] Ralf J. Sommer. Handbook of Graphs and Net-
works, chapter Cells and Genes as Networks in
Nematode Development and Evolution, pages
131–144. Wiley-VCH, Weinheim, Germany,
2003.

[222] Daniel A. Spielmann and Shang-Hua Teng.
Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving lin-
ear systems. In Proceedings of the 36th ACM
STOC, 2004.

[223] Christian Steglich. Actor-driven alternatives
to exponential random graph models. In Paper
presented at XXVI Sunbelt Social Networks
Conference (Vancouver, Canada), 2006.

[224] Ralf Steinmetz and Klaus Wehrle, edi-
tors. Peer-to-Peer Systems and Applications.
Springer Verlag, 2005.

[225] Steven Strogatz. Exploring complex networks.
Nature, 410:269–276, 2001.

[226] Steven H. Strogatz. Nonlinear Dynamics and
Chaos. Westview Press, 2000.

[227] Steven H. Strogatz. Romanesque networks.
Nature, 433:365–366, 2005.

[228] J. Szymanski. On the maximum degree and
the height of a random recursive tree. Random
Graphs, 87:313–324, 1990.

[229] Hongsuda Tangmunarunkit, Ramesh Govin-
dan, Sugih Jamin, Scott Shenker, and Walter
Willinger. Network topology generators: De-
gree based vs. structural. In Proceedings of the
SIGCOMM’02, 2002.

[230] D. Tian and N.D. Georganas. A coverage-
preserving node scheduling scheme for large
wireless sensor networks. In Proceedings of the
1st ACM Workshop Wireless Sensor Networks
and Applications, 2002.

[231] J. Travers and Stanley Milgram. An experi-
mental study of the small wolrd problem. So-
ciometry, 32:425–443, 1969.

[232] Alexei Vázquez, Alessandro Flammini, Amos
Maritan, and Alessandro Vespignani. Mod-
eling of protein interaction networks. Com-
PlexUs, 1:38–44, 2002.

[233] Frederic Vester. Die Kunst vernetzt zu denken.
Deutscher Taschenbuch Verlag, 2004 (4th edi-
tion).

[234] Tamas Vicsek. A question of scale. Nature,
411:421, 2001.

[235] Tamas Vicsek. The bigger picture. Nature,
418:131, 2002.

[236] M. Mitchell Waldrop. Complexity. Touchstone
(Simon & Schuster Inc.), New York, USA,
1993.

[237] Stanley Wasserman and Katherine Faust. So-
cial Network Analysis - Methods and Appli-
cations. Cambridge University Press, Cam-
bridge, revised, reprinted edition, 1999.

[238] Alison Watts. A dynamic model of network
formation. Games and Economic Behavior,
34(2):331–341, 2001.

[239] Duncan J. Watts. Small Worlds- The Dynam-
ics of Networks between Order and Random-
ness. Princeton Studies in Complexity. Prince-
ton University Press, 1999.

[240] Duncan J. Watts. A simple model of global
cascades on random networks. Proceed-
ings of the National Academy of Sciences,
99(9):5766–5771, 2002.

[241] Duncan J. Watts. Six Degreees - The Science
of a Connected Age. W.W. Norton & Com-
pany, New York, London, 2003.

[242] Duncan J. Watts and Steven H. Strogatz.
Collective dynamics of ’small-world’ networks.
Nature, 393:440–442, June 1998.

[243] Bernard M. Waxman. Routing of multipoint
connections. Journal on Selected Areas of
Communication, 6(9):1617–1622, 1988.

7. Summary 161

[244] Jörgen Weibull. Evolutionary Game Theory.
The MIT Press, Cambridge, Massachusetts,
1997.

[245] Karsten Weicker. Evolutionäre Algorithmen.
Teubner Verlag, Stuttgart, 2002.

[246] George M. Whitesides and Rustem F. Is-
magilov. Complexity in chemistry. Science,
284:89–92, 1999.

[247] Harry Wiener. Structural determination of
paraffin boiling points. Journal of the Ameri-
can Chemical Society, 69:17–20, 1947.

[248] David Bruce Wilson. Generating random
spanning trees more quickly than the cover
time. In Proceedings of the 28th annual ACM
symposium on Theory of computing, 1996.

[249] Carsten Witt. An analysis of the (µ+1) EA on
simple pseudo-boolean functions. In Proceed-
ings of the Genetic and Evolutionary Compu-
tation (GECCO’04), 2004.

[250] Stephen Wolfram. A New Kind of Science.
Wolfram Media, Inc., 2002.

[251] www.arxiv.org.

[252] Feng Xue and P.R. Kumar. The number
of neighbors needed for connectivity of wire-
less networks. Wireless Networks, 10:169–181,
2004.

[253] Fan Ye, Gary Zhong, Jesse Cheng, Songwu
Lu, and Lixia Zhang. Peas: A robust energy
conserving protocol for long-lived sensor net-
works. In Proceedings of the IEEE Interna-
tional Conference of Network Protocols (ICNP
2002), 2002.

[254] Soon-Hyung Yook, Hawoong Jeong, and
Albert-László Barabási. Modeling the in-
ternet’s large-scale topology. Proceedings of
the National Academy of the Sciences, USA,
99(21):13382–3386, 2002.

[255] Soon-Hyung Yook, Hawoong Jeong, Albert-
László Barabási, and Yuhai Tu. Weighted
evolving networks. arXiv: cond-mat/0101309,
Jan 2001.

8. DATA

8.1 Data sets

Some of the data used in this work have been published by others and were free for use. Here,
we will shortly give an acknowledgement for those data sets. The data sets used will be available
on request from the author to reproduce the data. Other data were crawled or computed by the
author or students of the group. We will briefly note the author of the according software and the
procedure by which the data was obtained.

8.1.1 Amazon co-purchasing Networks

The webshop Amazon [1] offers a SOAP interface by which data that is available on their webpages
is also freely available for automatic requests. In theory, every information on the websites should
be available by this interface but it turned out that the information is not necessarily the same.
Andreas Gerasch thus built a web bot that crawls the webpages as if it were a normal user. The
bot starts at some predefined starting book, indicated by the unique ISBN number. As additional
parameters, the number of threads and the depth unto which links are followed are given.

The bot searches for links to other books that are placed directly under the text line: ’Customers
who bought this book also bought’, the co-purchasing information. There are no more than six
links under this title (August 2006), and all of them are stored in a data base. This data base
stores each search with a different ID such that it is possible to store the same book multiple times.
The tool built by Andreas provides many very helpful features such as building the difference grap
given two graphs G1 and G2: In a difference graph, every vertex or edge that is only in G1 is
colored red, every vertex or edge that is only in G2 is colored green, all other vertices and edges
are black.

8.1.2 Autonomous System

The National Laboratory for Applied Network Research (NLANR) has documented the evolution
of the Internet from November 1997 to March 2001 and made this data publicly available at
http://moat.nlanr.net/AS/. An Autonomous System is generally a group of routers and computer
networks under the control of one entity.

The raw data provided by the NLANR gives routing information that implicitly contains infor-
mation on which Autonomous Systems are directly connected. For each month, the data of the
first ten days is combined and displayed as a network, where the Autonomous Systems are repre-
sented by the vertices and two vertices are connected if there is at least one path in which the two
Autonomous Systems are listed consecutively1. Note that this data is not perfect: If some paths

1 Our thanks go to Jan Vitense who provided us with this data

8. Data 163

are only rarely used, an edge might emerge in one month, be missing in the next few months, and
show up again later. We thus regarded only those edges and vertices as new that had never before
been seen in any of the earlier networks but where both vertices had already been in at least one
of the preceeding networks.

8.1.3 Co-Authorship Network

The data was kindly provided by M.E.J. Newman who used the same networks [176, 179]. These
networks are available from his homepage http://www-personal.umich.edu/ mejn/netdata.

The networks represent authors of papers published in the online preprint archive arxiv. In the first
data set, all papers published between 1995 and 1999 were analyzed, and in the second, all papers
published between 1995 and 2003. The networks are weighted but in this analysis we disregarded
the weights, and only the biggest connected component is used. The first data set contains 13,861
vertices and 44,619 edges, and the second 27,519 vertices and 116,181 edges. Of those, 57,277
edges are new edges between authors that were already present in the first network. These edges
are used to determine the new edge distance distribution.

8.1.4 Word Association and Protein-Protein Interaction Network

The data was kindly provided by Palla et al. who used the same networks in [188]; these networks
are available together with the tool CFinder at http://angel.elte.hu/ vicsek.

For the word association network, people were asked what word they associate with a given
word, and two words are connected by an edge if at least one person associated the two words
with each other. The network contains 7,205 vertices and 31,783 edges in the biggest con-
nected component which was used here. Palla et al. name a website from which the data
can be obtained that seems to be outdated. The data can now be found starting from page
http://w3.usf.edu/FreeAssociation/intro.html.

The protein-protein interaction network presents proteins from the organism Saccharomyces cere-
visiae that were found to interact with each other in biological experiments. This network contains
2,445 vertices and 6265 edges in the biggest connected component, where self-loops have been
removed.

8.1.5 Live–Journal Networks

Live–Journal is an online platform that allows users to build a personal page and to blog. Users
can link to other users (or themselves), called friends. For the creation of the Live Journal network
a crawl was started at one participant of www.livejournal.com, following the links to designated
friends unto depth 3. The network size increases strongly in dependence of the depth since most
users have links to between 50–100 ‘friends’.

9. PUBLICATIONS

In this chapter I will give a short abstract for all of my publications that could not be explained
in detail in this work but were published during my period of graduate studies.

9.1 Graph Drawing

9.1.1 Area-optimal HV-like Tree Drawings with a Fixed Aspect Ratio

This article describes a new way to visualize trees such that any desired aspect ratio of width and
height can be computed in a very efficient way. The paper was published in the proceedings of the
31st conference on “Current Trends in Theory and Practice of Computer Science” [119].

9.2 Centrality Indices

9.2.1 Centrality Indices, Algorithms for Centrality Indices, and Advanced Centrality Concepts

There are four publications centered around the idea of centrality indices, three of them in a
review-like book on network analysis [41] written together with a group of people, where I was one
of the main authors in chapter [132] and [133]. The book was supported by the GI, the German
Society of Computer Science, and published in the Lecture Notes in Computer Science (LNCS)
series. The idea of these books is to review the latest advances in science that are not yet covered
by text books. The first chapter gives the definition of various centrality indices. Since these
indices were developed by different communities, and sometimes not even explicitly as centrality
indices, we tried to find categories of similar measures in which every individual centrality index
finds its place [132]. The second chapter gives an overview of efficient algorithms to compute these
centrality measures [113]. The third chapter explains and explores advanced concepts of centrality
indices, e.g., the stability of centrality indices against perturbations of the data, or a framework
that shows when which of the centrality indices can be applied to find the most central vertex in
a given network [133].

9.2.2 Decentralized Algorithms for Evaluating Centrality in Complex Network

This paper is a technical report, written together with Michael Kaufmann where we show that
shortest–path–based centrality indices can also be computed in decentralized networks where com-
munication is allowed but no vertex can keep the whole adjacency matrix of the network in memory
[144].

9. Publications 165

9.3 Sensor Networks and Peer-to-Peer Systems

9.3.1 Random Graphs, Small Worlds, and Scale-Free Networks

Similar to the network analysis book described above, Ralf Steinmetz and Klaus Wehrle wrote a
book on Peer-to-Peer Systems and Applications in the LNCS series. They invited Michael
Kaufmann and me to write a chapter on the influence that network topology and network modeling
has on current peer-to-peer systems [146].

9.3.2 A New Approach for Boundary Recognition in Geometric Sensor Networks

This publication describes an application of centrality indices to sensor networks, written together
with Sandor Fekete, Alexander Kroeller, and Michael Kaufmann. Sensors are very small devices
that can communicate, are not too expensive, but therefore have only limited ressources, e.g.,
battery life and communication radius. The idea is to spread them by the thousands into an area,
let them collect data in a self-organized way, and use this data, e.g., to forecast a possible breach
in a dyke, or to analyze the dynamics in temperature and salinity of the deep sea. We developed
a new centrality index that makes it possible to differentiate between those vertices that lie on the
border of an area and those that are surrounded by many other sensors. The article was published
in the proceedings of the 17th “Canadian Conference on Computational Geometry” [83].

9.3.3 T-DHT: Topology–Based Distributed Hash Tables

Together with Olaf Landsiedel and Klaus Wehrle we developed a new idea about how to manage
data in a sensor network. The main idea is to use the adjacency matrix of a sensor network to
develop something like a topology (i.e., a number space) such that two vertices that are assigned
two close numbers should not be too far apart in the network. If such a labeling can be found it can
be used to store the data in a topology–based distributed hash table. The article was published in
the proceedings of the “IEEE Conference on Peer-to-Peer Computing” [140].

9.3.4 On the Topologies of Local Minimum Spanning Trees

This article was the surprising outcome of a one week workshop on graph drawing in Bertinoro,
Italy. Together with six co-authors, we worked on the problem of the so-called local minimum
spanning tree (LMST), i.e., a subgraph structure that comprises all vertices (spanning) but that
can be computed locally where every vertex can only use the data available from vertices in distance
k to it. My contribution to this article, together with M. Patrignani, was to show that given the
adjacency matrix, it is NP-hard to decide whether it could be the LMST-graph of the embedded
graph. The article was published in the proceedings of the 3rd “Workshop on Combinatorial and
Algorithmic Aspects of Networking” (CAAN’06) [63].

9.4 Network and Structural Analysis of SAT problems

Since I was quite advanced in my graduate studies when I finally wrote my diploma thesis to
complete my studies in informatics, network analysis also became part of my diploma thesis. In
this work, we tried to apply the ideas of network analysis and network modeling to the structural

9. Publications 166

analysis of so-called satisfiability problems (SAT problems). In these problems, a Boolean formula
in conjunctive normal form is given and the question is whether there is an assignment of Boolean
values to the variables such that the whole formula evaluates to true (in Boolean logic). It is
long known that so-called real-world instances, i.e., those that arise from technical applications
like software- or hardware-verification [136], are much easier to solve than expected given the
enormous number of variables and constraints. Since SAT problems can be transformed into
graphs, our approach was to find special structural properties of real-world SAT problems that
differentiate them from random SAT problems. Our findings are published in my diploma thesis
and are currently being prepared for publication [143].

9.5 C-max Tolerance Graphs

Triggered by a bioinformatic application developed in the working group of Kay Nieselt (Tübingen),
we wrote two paper on c-max tolerance graphs that helped to characterize this family of graphs,
a longstanding open question in the realm of tolerance graphs [96]. In general, tolerance graphs
are based on a given set of intervals where two intervals are connected if they overlap in a defined
way. For simple interval graphs in which two vertices are connected if the corresponding intervals
overlap to any extent it was known that finding all maximal cliques is in O(n), although it is,
in general, NP-hard. In c-max tolerance graphs two vertices are connected if the corresponding
intervals overlap such that each covers at least 0 ≥ c ≥ 1.0 of the length of the other interval.

9.5.1 Max-Tolerance Graphs as Intersection Graphs: Cliques, Cylces, and Recognition

The first paper deals with the characterization of this family of graphs, written together with
Michael Kaufmann, Jan Kratochv́ıl, and Amarendran Subramanian. We showed that finding all
maximal cliques in these graphs is still in P , namely in O(n3), but therefore harder than in simple
interval graphs. Jan Kratochv́ıl was able to show that the recognition of these graphs is NP-hard,
and could answer two open questions regarding c-max tolerance graphs. This paper was published
in the proceedings of the 17th “ACM Symposium on Discrete Algorithms” (SODA’06) [118].

9.5.2 On the Maximal Cliques in c-max Tolerance Graphs and Their Application in Clustering

Molecular Sequences

The second paper deals with the application of these findings to biological data, namely how
to compute all maximal cliques in c–max tolerance graphs of DNA- or amino-acid sequences.
The paper was written together with Michael Kaufmann, Kay Nieselt, and Stephan Steigele, and
published in Algorithms for Molecular Biology, 2006 [147].

INDEX

S3 networks, 118
t spanner, 81

ad-hoc network, 134
agent, 119
Albert-Barabási graphs, 28
area coverage, 134
assortativity, 65
attractor, 108
automorphism, 28
autonomous system graph, 14

backbone, 81

centrality index, 15, 22, 59, 64
circulant graph, 31
citation graphs, 110
citation networks, 61
clustering, 65
clustering algorithms, 22
clustering coefficient, 30, 65
co–authorship network, 73
collective behavior, 11
complex network sciece, 10
complex systems science, 10
corresponding random graph, 31
cut, 94
cut base

fundamental, 93
cut space, 94
cycle base

fundamental, 93
cycle space, 93
cyclomatic number, 93

degree distribution, 16, 26
degree distribution

scale–free, 16
scale-free, 28

diameter, 31, 65
distance, 26
distance distribution

possible, 68

realized, 68
relative, 68

dominating set, 60
dynamic network

definition, 108

embeddable local graph, 78
embedded graphs, 78
emergency, 11
emergent property, 11
Euler tour, 14
evolution of networks

game theory, 110
generating functions, 113
linear algebra, 112
renormalization group analysis, 112
scaling theory, 112
stochastic models, 113

evolutionary network model, 118

fitness, 61, 115
fundamental cut base, 93
fundamental cut base

definition, 94
fundamental cycle base, 93
fundamental cycle base

definition, 93

game theory
equilibrium, 110
strategy, 110
utility function, 110

genetic algorithms, 111
graph

definition, 25

hierarchically embeddable strongly local, 80

inheritance, 115
Internet

network analysis, 14
isomorphic, 28
isomorphism, 28

167

Index 168

knn-graph, 53, 65
Kruskal , 68

randomized, 68

local minimum spanning tree, 45
locality, 36

metric space, 78
minimal length cycle basis problem, 60
minimal length fundamental cycle basis prob-

lem, 60
Minimal Spanning Tree, 28
minimum spanning tree, 45
mutation, 115

natural selection, 116
nearest-neighborhood graphs, 53
network creation game, 111
network formation game, 111
network generating system, 23
Network Model

Dynamic, 110
semi–dynamic, 110
static, 110

network–generating system, 59
NP-complete, 29
NP-hard, 29

overlay network, 81, 134

Partition, 26
partition, 26
partition

refinement, 26
path, 26
power-law graphs, 28
preferential attachment, 28, 65
preferential attachment mode, 28
protein–protein interaction network, 76
protein-protein interaction network, 38, 115

random graph, 15
random graph

corresponding, 31
random recursive tree model, 113
reductionism, 10
regular decomposability, 46

scale–free, 16
scale-free degree distribution, 28
scale-free graphs, 28

scale-free network model, 28
scientitif collaboration network, 110
selection, 115
sensor network, 134
shortest path, 26
small–world phenomenon, 46
small-world model, 31
spectrum of graphs, 112
stable network structure, 108
statistical mechanics, 11
subgraph, 25
subgraph, induced, 25

The rich get richer-phenomenon, 28
triangle inequality, 78

unit-disk graph, 65

vertex cover, 20

wireless communication network, 134
word adjacency network, 77
word–association, 71

