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Abstract. In the last 10 years a new interest in so–called real–world
graph structures has developed. Since the structure of a network is crucial
for the processes on top of it a well–defined network model is needed for
simulations and other kinds of experiments. Thus, given an observable
network structure, models try to explain how they could have evolved.
But sometimes also the opposite question is important: given a system
with specific constraints what kind of rules will lead to a network with
the specified structure? This overview article discusses first different real–
world networks and their structures that have been analyzed in the last
decade and models that explain how these structures can emerge. This
chapter concentrates on those structures and models that are very simple
and can likely be included into technical networks such as P2P-networks
or sensor networks. In the second part we will then discuss how difficult
it is to design local network generating rules that lead to a globally
satisfying network structure.

1 Introduction

Since the 1950s a considerable part of graph theory was devoted to the study
of theoretical graph models, so–called random graphs that are created by a
random process. Especially the random graph models G(n,m) defined by Erdös
and Rényi in 1959 [19] and the G(n, p)-model introduced by Gilbert [22] proved
themselves to be very handy and well analyzable [9]. Other simple graph classes
like regular graphs, grid graphs, planar graphs, and hypercubes were also defined
and analyzed, and many of their properties proved to be useful in algorithm
design, making hard problems considerable easier. It is reasonable that most
real–world networks neither belong to any of the simple graph classes nor that
they can be fully modeled as random graphs. But on the other hand, it seemed
to be reasonable that at least some real-world networks can be considered to be
random on a global scale, for example the so–called weblink graph: the weblink
graph represents webpages as vertices and connects two vertices with a (directed)
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edge when the first page links to the second. Although it can be assumed that
most of the time similar pages link to each other, the vast number of single
decisions could be assumed to randomize this structure on a global scale. Thus,
it came with a surprise when in 1999, Barabási and Albert showed that the real
weblink graph cannot be modeled by a random graph since most of the webpages
have only a low degree of in- and outcoming links while some have a huge degree,
e.g., Yahoo or Google [6]. This phenomenon could not be explained by any of
the classic random graph models. Another finding by Watts and Strogatz showed
that real–world networks combine two properties that are not captured by any
of the classic network models: real–world networks tend to be clustered, i.e., the
neighbors of any vertex are likely to be connected, similar to grid graphs, but at
the same time the average distance between all the vertices is much lower than
expected in such a grid–like graph and resembles that of a random graph [48].

These findings opened a new field in between empirical sciences, mostly
physics, biology, and the social sciences, and theoretical sciences as computer
science and mathematics. This field is called complex network science [38, 5]3. In
a very broad definition, we will denote by complex network science all research
that can be subsumed under the following three perspectives:

1. Complex Network Analysis: measures and algorithms introduced to un-
derstand the special structure of real–world networks by differentiating them
from established graph models.

2. Complex Network Models: models that capture essential structural prop-
erties of real–world networks and algorithms that construct them.

3. Processes on Complex Networks: analysis of the outcome of a process
or algorithm on a given network structure.

In the following we will summarize the progress in the field of complex net-
work models and show its relevance for algorithm design and computer sim-
ulations. Section 2 gives the necessary definitions and Section 3 discusses two
principally different ways of modeling real–world network data, the data–driven
and the mechanistic approach. Section 4 focuses on different mechanistic net-
work models for real–world networks. Section 5 discusses some of the difficulties
in designing networks for a set of independent agents. A summary and discussion
of open problems is given in Section 6. Section 7 gives a list of well-organized
resources for further reading.

2 Definitions

A graph G is a pair of sets (V,E) where V = {v1, . . . , vn} denotes a set of vertices
and E ⊆ V ×V denotes a relation between these vertices. If all edges of a graph
are given as unordered pairs of vertices, the graph is said to be undirected. The
degree deg(v) of vertex v is defined as the number of edges it is element of.

3 Complex network science strongly overlaps with a new field called web science, in-
troduced by (among others) Sir Berners-Lee [8].
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We will denote undirected edges e by pairs of vertices in simple brackets (v, w).
A weight function ω : E → R assigns a weight to each edge. If the graph is
unweighted, it is convenient to set ω(e) := 1 for all edges. A path P (s, t) from
vertex s to vertex t is an ordered set of consecutive edges {e1, e2, . . . , ek} ⊆ E
with e1 = (s, v1), ek = (vk−1, t) and ei = (vi−1, vi), for all 1 < i < k. The length
of a path l(P (s, t)) is defined as the sum over the weights of the edges in the
path:

l(P (s, t)) =
∑

e∈P (s,t)

ω(e). (1)

A path P (s, t) is a shortest path between s and t if it has minimal length of all
possible paths between s and t. The distance d(s, t) between s and t is defined
as the length of a shortest path between them. If there is no path between any
two vertices, their distance is ∞ by definition. The diameter of a given graph is
defined as the maximal distance between any two of its vertices if the graph is
connected and defined to be ∞ if it is unconnected.

We will denote as a real–world network or, synonymously, as a complex net-
work any network that presents an abstract view on a complex system, i.e., a
real–world system comprised of different kinds of objects and relations between
them. A complex network depicts normally only one class of objects and one
kind of relation between the instances of this object class. Examples for complex
networks are the weblink graph, that depicts web pages and links connecting
them, social networks, e.g., the hierarchical structures between employers of a
company, or transport networks, i.e., certain places that are connected by means
of transportation like streets or tracks. Thus, real–world or complex networks do
not comprise a new kind of graph class that can structurally be differentiated
from other graph classes. The term merely denotes those graphs that represent
at least one real–world system in the above sense.

One of the structural properties of a graph is its degree distribution, i.e., the
number of vertices with degree deg(v) = k in dependence of the degree. It is
well known that random graphs have a Poissonian degree distribution [9], with
a mean degree of np and standard deviation of

√
np.

A graph family GA(n,Π) is a set or graph defined by some algorithm A that
gives a description to construct graphs for every given n and - if needed - an
additional set of parameters Π. If A is a deterministic algorithm it constructs a
single graph, if it is a stochastic algorithm it constructs all graphs with n vertices
(and maybe additional parameters specified by Π) with a determined probability.
The instance that is created from some defined graph family GA(n,Π) is denoted
by GA(n,Π). For graph families, we will often state expected properties with
the words: with high probability, denoting that an instance GA(n,Π) constructed
by A will show property X with a probability higher than 1 − 1/n.

A random graph G(n, p) is a graph with n vertices where every (undirected
or directed) edge is element of E with probability p. A different but related al-
gorithm for constructing random graphs is the G(n,m) family of random graphs
that picks m pairs of vertices and connects them with each other. Most of the
time an implementation will try to avoid self-loops and multiple edges. Bollobás
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states that for lim n → ∞ all expected properties of both families will be the
same [9]. In the following, the term random graph will always denote an instance
from the G(n, p) model.

3 Data–driven, Mechanistic, and Game Theoretic

Network Models

There are principally different ways of modeling real–world network data: one
way tries to model one data set as closely as possible, resulting in a very accurate
model of a given system. We call this the data–driven approach to network mod-
eling. The other way searches for a structure that is common in many different
systems, a so–called universal structure, and tries to explain the emergence of
this structure with as few parameters as possible. These models follow the mech-
anistic approach. A third approach that is also often called a network formation
game models complex systems in which networks emerge between independent
agents. In most of these models the mechanism by which individual agents form
bonds is given and the resulting network is in the focus of the analysis. In the
following we will discuss these three types of network models and argue why and
how mechanistic networks can be helpful in computer science.

Given an empirical data set, e.g., a social network that is explored by giving
questionnaires to a group of people, it is necessary to model it as closely as
possible while allowing some randomness. The random element allows for missing
or false data which is often a problem in survey–based data and it also allows
for deducing from the model the general behavior of other social networks with
a similar overall structure. E.g., by exploring one email contact network in one
company general statements might be possible about email contact networks in
other companies with the same structure. These kind of graph models that try
to describe a given empirical data set as closely and with as little parameters
as possible can be called data–driven graph models. A very popular approach of
this kind is the exponential random graph model [42, 43] and block modeling [39].

A very different perspective on modeling originates in the physics community:
instead of modeling the details of a given graph they try to find an essential,
mechanistic model that explains how a given structure could emerge in many
different systems. These models are rather simplistic and will thus not provide
very realistic models for any specific data set. But since they are so simplistic
they can often be very easily adjusted to a specific system by adding back the
peculiarities of that system.

Note that game–theoretic models of network formation are also very popular,
but their perspective is in a way opposite to that of data–driven and mechanistic
network models [7]: they define some kind of mechanism that determines how
so–called agents decide which edges to build. The main question of these models
is then which kind of network structures are stable in the sense that none of
the agents would prefer to alter its own edge set. Thus, whereas data–driven
and mechanistic network models start from a given structure that is modeled,
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game–theoretic approaches start with a presumed network formation mechanism
and analyze the resulting network structure.

In this chapter we will concentrate on mechanistic graph models that explain
universal network structures with the least number of parameters necessary to
produce them. Since these models are so simple but the resulting networks still
show some very helpful properties, they can easily be adapted to be used in
different computer–aided networks, e.g., P2P– or sensor–networks. We will thus
concentrate on these mechanistic models in the rest of the chapter. We start by
discussing the most common universal network structures and sketching some of
the simple, mechanistic models that describe a reasonable mechanism for their
emergence.

4 Real–World Network Structures and their Mechanistic

Network Models

Among the structures found so far, the following four seem to be quite universal
in many kinds of complex networks:

1. Almost all complex networks are small–worlds, i.e., locally they are densely
connected while the whole graph shows a small diameter [48] (s. Subsect. 4.1);

2. Most of all complex networks are scale–free, i.e., most vertices have a low
degree but some have a very high degree [6] (s. Subsect. 4.2);

3. Many of them are clustered, i.e., it is possible to partition the graph into
groups of dense subgraphs whose interconnections are only sparse [16, 23,
37, 40];

4. At least some of them seem to be fractal [44].

Other structures, especially small subgraphs in directed networks, so–called net-
work motifs, have been identified in only a few networks, especially biological
networks [35, 36]. We will concentrate on the first two structures since it has
already been shown that these properties influence processes on networks that
are relevant in computer science as we will sketch in the following.

4.1 Small–Worlds

In 1998, Watts and Strogatz reported that in many real–world networks the
vertices are locally highly connected, i.e., clustered, while they also show a small
average distance to each other [48]. To measure the clustering they introduced
the so–called clustering coefficient cc(v) of a vertex v to be:

cc(v) =
2e(v)

deg(v)(deg(v) − 1)
, (2)

where e(v) denotes the number of edges between all neighbors of v4. Since the
denominator gives the possible number of those edges, the clustering coefficient

4 The clustering coefficient of vertices with degree 1 is set to 0 and it is assumed that
the graph does not contain isolated vertices.
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of a single vertex denotes the probability that two of its neighbors are also con-
nected by an edge. The clustering coefficient CC(G) of a graph is the average
over all the clustering coefficients of its vertices. A high average clustering coef-
ficient in a graph seems to indicate that the vertices are connected locally and
that thus the average distance of the according graph will be large. This is, e.g.,
the case in a simple grid, where vertices are only connected to their next four
neighbors and thus the diameter scales with

√
n. Astonishingly, the diameter

of the real–world networks analyzed in the paper of Watts and Strogatz was
more similar to that of a corresponding random graph from the G(n, p) model,
despite their high average clustering coefficients. A random graph is said to be
corresponding to a real–world network if it has the same number of vertices and
expectedly the same number of edges. Such a graph can be achieved by setting
p to 2m/(n(n − 1)). Of course, the expected clustering coefficient of vertices in
such a graph will be p since the probability that any two neighbors of vertex v
are connected is p. It now turned out that the real–world networks the authors
analyzed had a clustering coefficient that was up to 1, 000 times higher than that
of a corresponding random graph.
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(a) Gc(24, 3), p = 0
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(b) p = 0.1
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(c) p = 1

Fig. 1. a) A circulant graph of 24 vertices where each vertex is connected to its three
nearest neighbors. b) Each edge has been rewired with probability p = 0.1. c) Each
edge has been rewired with p = 1.0.

The first mechanistic model to reproduce this behavior, i.e., a high average
clustering coefficient combined with small average distance, was given by Watts
and Strogatz (s. Fig. 1): They start with a set of n vertices in a circular order
where each vertex is connected with an undirected edge to its k clockwise next
neighbors in the order. Such a graph is also called a circulant graph. Each edge
is subsequently rewired with probability 0 ≤ p ≤ 1. To rewire an edge e = (v, w)
a new target vertex w′ is chosen uniformly at random, and (v, w) is replaced by
(v, w′). It is clear that with p = 0, the clustering coefficient is given by:

CC(G) =
3(k − 1)

2(2k − 1)
, [38, p.289] (3)
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which approaches 3/4 in the limit of large k. The average distance between pairs
of vertices is n/4k which scales linearly with the number of vertices. If now the
average clustering coefficient and the average distance is analyzed with respect
to p (s. Fig. 2), it is easy to see that the average distance drops much faster
than the average clustering coefficient. Thus, for small p, the average clustering
coefficient is still quite high while the average distance has already dropped to a
value comparable to that of a corresponding random graph. The regime in which
that happens defines the set of networks showing the small–world effect or, for
short: the set of small-world networks. Note that this very blurry definition has
never been stated more rigorously. As Newman, Watts, and Barabási put it,
nowadays the term ”small–world effect” has come to mean that the average
distance in the network increases at most (poly–)logarithmically with n while
the average clustering coefficient is much higher than p = 2m/(n(n − 1)).
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Fig. 2. Shown is the average clustering coefficient (denoted by C here) and the average
distance (L) in the Watts–Strogatz–model, in dependence of the rewiring probability
p and normalized by the resulting value for p = 0 (C(0), L(0)). The average clustering
coefficient is quite stable as long as not too many edges are rewired, while the average
distance drops very fast, even at very low values of p.

Next to this rewiring model, other authors suggested to model small–world
networks by composing something like a local, grid–like graph with a very sparse
random graph, e.g., Kleinberg [26, 25] and Andersen et al. in their hybrid–graph
model [4, 14]. The simplest model is to take a d–dimensional grid graph on n
vertices and additionally connect each pair of vertices with probability p. This
hybrid graph model is denoted by Gd(n, p). Of course, if p is around (log n)1+ǫ/n
for some constant ǫ > 0 the edges constituting the random graph part alone will
induce an average distance of O(log n) [10]. As we could show, also much smaller
values of p suffice to reduce the diameter (and thus the average distance) to a
poly-logarithmical term:



8

Lemma 1. [29, 49] For p = 1
cn , c ∈ R

+ and ǫ > 0 the diameter of Gd(n, p) is
asymptotically bound with high probability by at most

d ·
(⌈

d

√

c · (log n)1+ǫ
⌉

− 1
)

·
(

log n

(1 + ǫ) log log n − log 2
+ 1

)

. (4)

Very broadly speaking: the diameter of a combined graph is linearly dependent
on the dimension d of the underlying grid and on (very broadly) O(log n1+(1+ǫ)/d).

This result can be generalized as follows:

Lemma 2. [29, 49] For any function (log n)−(1+ǫ) ≤ f(n) ≤ n1−δ, ǫ, δ > 0
and p = 1

f(n)·n the diameter of Gd(n, p) approaches asymptotically with high

probability

d ·
(⌈

d

√

f(n) · (log n)1+ǫ
⌉

− 1
)

·
(

log(n/f(n))

log(log n)1+ǫ

)

. (5)

Roughly speaking, if p is set to 1/(n log n), i.e., only every log n-th vertex is
incident with a random edge, the average distance in the Gd(n, p) model for

large n and d = 2 is given by O(
√

log2+ǫ n log n), i.e., O(log2+ǫ/2 n). This result
is important for network design: let us assume that the cost for connecting
two communication devices scales with their distance. If only connections up
to a certain distance are built, the diameter of the resulting network will scale
approximately linearly with the largest distance. Our result now shows that
only a small amount of random–like edges has to be built in order to shrink the
network’s diameter to a quadratic logarithmic term.

It could be shown that small–worlds are ubiquitious. Especially important
for computer scientists, all technical communication networks, like the Internet
and various overlay–networks, have the property that they show a small average
distance together with a high clusteredness. Thus, if a new kind of Internet
protocol or a new P2P–system is simulated, it is very important to simulate
them on a network model that comprises these two properties.

As stated above, the small–world effect assumes that the average distance is
bound by O(logk n) for some constant k. The models given above will essentially
show a growing average distance for increasing numbers of n. In 2005, Leskovec
et al. analyzed the average distance in growing real–world networks [30, 31]. They
found that actually the diameter of growing graphs shrinks in some cases instead
of growing (poly–)logarithmically with increasing n. They also present some new
network models that describe this behavior. We refer the interested reader to
their paper [30].

Another, even more important structural property of networks was found in
1999, the so–called scale–freeness of real–world networks.

4.2 Scale–Free Networks

Given a graph G let P (k) denote the probability to choose a vertex with degree
k uniformly at random from all vertices of the graph. A complex network is said
to be scale–free when P (k) scales with k−γ where γ is a positive constant [6].
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This distribution is also said to follow a power law5. For real–world networks,
γ is often between 2 and 3, see [38, Table 3.7] for an overview of n,m, and
γ of around 30 different network types. The easiest way to detect a scale–free
distribution is to compute P (k) and to display it in dependence of k in a dou-
ble logarithmic diagram. Since log P (k) ≃ −γ log k the resulting plot shows a
straight line. Note however that if the available data does not span a large or-
der of magnitudes it is actually hard to differentiate between power–laws and
other possible distributions. Clauset et al. describe how to make more accurate
estimates of the parameters governing a power–law distribution [17]. One such
scale–free degree distribution in a real–world complex network was observed by
the Faloutsos brothers in 1999 when they analyzed a sample of the weblink graph
[20].

As is obvious by the construction of a random graph, its degree distribution
follows a normal distribution (for large n). In comparison with this, a scale–free
graph with the same number of vertices and edges as a corresponding random
graph has much more low–degree vertices and also some vertices with a much
higher degree than to be expected in a random graph. These high–degree vertices
are also called hubs.

The first model that explained how such a scale–free degree distribution can
emerge is the preferential attachment or the–rich–get–richer model by Barabási
and Albert [6]: it is a dynamic network model where in each step i one new
vertex vi is added together with k incident edges. It starts with a small random
graph of at least k vertices. Subsequently, each new vertex vi chooses k vertices
from the already existing ones, each with a probability that is proportional to its
degree at this time point and creates an edge to it. More precisely, the probability
that the newly introduced vertex vi chooses vertex w is proportional to deg(w)
at that time point. Thus, if a vertex already has a large degree, it has a higher
chance to get a new edge in each time step, a process which is called preferential
attachment. This procedure produces a scale–free network in the limit of large
n [1]. Note that the original model is not defined in every detail, especially the
starting graph and the exact choice mechanism are not fully defined. As Bollobás
and Riordan point out, different choices can lead to different results [10]. Their
LCD model is defined rigorously and can thus be analyzed more easily [11]. For
an overview on other scale–free producing network models see also [7].

Many real–world networks are reported to have scale–free degree distribu-
tions, the Internet [20], the weblink graph [6], or the web of human sexual con-
tacts [32, 33], to name just a few. Especially the findings on the sexual contact
network have important consequences: first, it can explain why sexual diseases
are so easily spread and second, it can also help to prevent the spreading, by
finding especially active hubs and treat them medically. This follows from the
fact that scale–free networks are most easily disconnected if only a small frac-
tion of the high–degree vertices are removed as we will discuss in Section 4.3.

5 Note that power laws have different names like ’Lotka’s law’ or ’Zipf’s law’ and
were investigated much earlier in other disciplines. E.g., 1926 Lotka observed that
citations in academic literature might follow a power law [34].
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The scale–free nature of email contact networks can also explain why some (com-
puter) viruses stay nearly forever in the network: Pastor-Satorras and Vespignani
discuss a model of virus spreading over a scale–free network and show that in
this network there is no epidemic threshold, i.e., no minimal infection density to
enable the infection of nearly the whole network [41]. Thus, in such a network,
every virus can potentially infect the whole network.

4.3 Robustness of Random and Scale–Free Networks

One very interesting finding of Albert et al. is that different network struc-
tures show very different robustness against random failures and directed at-
tacks against their structure [2]. They defined the robustness of a network as the
average distance after a given percentage of the vertices were removed from the
network. The removal is modeled in two ways: to model a random failure of, e.g.,
a server in the internet, any vertex is chosen uniformly at random to be removed
from the network; to model a directed attack of some malicious adversary that
knows the network structure, the vertex with highest degree is removed from the
network. Albert et al. could show that in a random failure scenario the robust-
ness of a scale–free network is much higher than that of a corresponding random
graph. Furthermore, after removing more and more vertices, the random graph
finally disconnects into many small connected components while most vertices in
the scale–free network are still forming a big connected component. But for an
attack scenario, the reverse is true: while the random graph stays connected and
shows a rather low average distance, the scale–free network will decompose after
just a few high–degree vertices are removed. This behavior is easily explained:
in a random failure scenario, most of the removed networks in a scale–free net-
work will have a very small degree since most vertices in a scale–free network
have a small degree. In a random graph, almost all vertices have the same de-
gree and the same importance for the connectedness of the graph. This property
saves the network in the case of directed attacks. But the scale–free network
will lose a high percentage of its edges very quickly if its high–degree vertices
are removed which makes it very vulnerable to this kind of attack. This result,
although very easily explained when it was discovered, is quite devastating since
most of our communication and even some of our transportation networks, espe-
cially flight networks, are scale–free. Thus, Albert et al. showed how easily these
networks might become disconnected. We will show in the following section that
this problem can be alleviated by allowing the network to react to the attacks.

5 Network Design for Systems with Independent Agents

In many complex systems there is no central authority, they are decentrally
organized. In these networks, it is, e.g., very hard for a single participant to
understand whether a missing neighbor is missing due to a random failure or a
directed attack since this requires a global overview. Nonetheless, because of the
different robustness of random and scale–free network structures (s. Subsec. 4.3)
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it would be very convenient if a network could change its structure according
to the situation it is in, i.e., to a random network in the case of attacks and
to a scale–free network in the case of random failures. In the following section
we will show that this can be achieved in a decentrally organized network. In
Sec. 5.2 we will then show how carefully a network generating protocol has to
be implemented in a decentrally organized system because a subtle change can
make the difference between an efficient and an inefficient network evolution.

5.1 Adaptive Network Structures

In [50] we considered the question of whether a decentrally organized network
can adapt its network structure to its environmental situation, i.e., a random
failure scenario or an attack scenario, while the single participants are oblivious
of this situation. The first thing to observe is that it is not necessary to have
a really random network structure in the case of attacks, it suffices to have a
network in which almost every vertex has the same degree. It is also not necessary
to make a real scale–free network in which the degree distribution is described
by P (k) ≃ k−γ . It suffices if the degree distribution is sufficiently right–skewed,
i.e., if most of the vertices have a low degree and some a very high degree.
The second observation to be made is that in the case of attacks, the wanted
change towards a more uniform degree distribution is essentially achieved by
the nature of the attack itself: since it removes high–degree vertices it smoothes
the degree distribution. A third observation is that in the model of Albert et
al. the vertices are not allowed to react to the situation. Thus, in the scale–free
network the attack on only a few high–degree vertices already removes a high
percentages of the edges. We will now present a network re–generating protocol
that is decentral and oblivious of the situation in which the network is in and
achieves to adapt the network’s structure to the one best suited for the situation.
Consider the following model: In each time step remove one vertex x at random
(random failure scenario) or remove the vertex with the highest degree (attack
scenario). A vertex v notices if its neighbor x is missing. Vertex v will now build
one edge to any of its neighbors w in distance 2 with probability 0.5. Let this
set of neighbors in distance 2 be denoted by N2(v). The probability with which
a vertex v chooses w is computed by the following generic formula:

pi(v, w) =
deg(w)i

∑

w′∈N2(v)

deg(w′)i
. (6)

Thus, if i = 0 all second–hand neighbors have the same probability to be cho-
sen, if i = 1 the process resembles a local preferential attachment. Algorithm 1
describes this re–generating behavior in pseudo code. In the following A0 will
denote this algorithm where pi(v, w) is computed with i = 0 and A1 denotes the
algorithm where i is set to 1.

Note that to be able to compare the robustness of the resulting networks it is
necessary to keep the number of vertices and edges constant. Thus, the removed
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Algorithm 1 Algorithm for rewiring a deleted edge to one of the second neigh-
bors.

procedure Node.rewire(Node v) ⊲

if (any neighbor of node v is deleted) then
if (random.nextDouble() < 0.5) then

target ← choose second neighbor w with probability Pi(v, w));
create edge between node v and target;

end if
end if

end procedure

vertex x is allowed to re–enter the network, building edges at random to other
vertices. To keep the number of edges (at least approximately) constant x will
build half as many edges as it had before the removal6. Thus, since every of its
former neighbors builds a new edge with probability 0.5 and itself builds another
deg(x)/2 edges, the number of edges stays approximately constant.

Consider now a random graph that suffers from random failures. In this sce-
nario, we would like the graph to establish a right-skewed degree distribution.
Fig. 3 shows that algorithm A1 is faster in building a right–skewed degree distri-
bution than A0. This implies that also a local preferential attachment is enough
to create something like a scale–free degree distribution.

Remember that a real scale–free network structure stabilizes the network
against random failures, i.e., it keeps a low average distance even if a substantial
part of the vertices are removed at random. It also makes the network more
fragile against directed attacks. To measure this effect we use Albert et al.’s
definition of robustness: the robustness of a graph as introduced by Albert et
al. [2] is measured by the average distance between all vertices after a given
percentage of nodes is removed from the graph (without any rewiring). In the
following we will set this value to 5%. If robustness against attacks is measured,
the removed vertices are the 5% vertices with highest degree, in the case of
random failures the set is chosen uniformly at random. The robustness measures
are denoted by RA(G) for attack robustness and by RRF (G) for random failure
robustness. Note that this measure as introduced by Barabási and Albert is a
bit unintuitive since a higher value denotes a less robust network and a lower
value denotes a more robust network.

To analyze whether A1 creates a robust network against random failures and
a fragile network with respect to attacks, we started with a random graph with
1, 000 vertices and 5, 000 edges. This network then experiences 20, 000 random
failures. After 1, 000 failures each, the resulting graph is taken and RA(G) and
RRF (G) are measured. After that, the next 1, 000 random failures are simulated
together with the re–generating algorithms A0 and A1, respectively.

6 We tried many different variations of re–inserting the removed vertex. The general
outcome did not seem to be influenced by the details of this procedure. It should be
noted that the method sketched here neither introduces a skewed nor a very narrow
degree distribution on its own.
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Fig. 3. Exemplary evolution of the degree distribution of one random graph after 5, 000
random failures, plotted after every 1000 deletions. (a) Since both runs start with the
same random graph with n = 1000 and m = 5, 000, the degree distribution is the same
for both algorithms. (b)-(f) Each diagram compares the resulting degree distribution
after applying algorithm A0 and A1. It is clear to see that A1 results in a degree
distribution that is more right-skewed than the one created by A0. For example, in
diagram f , the highest degree in the graph resulting from procedure A1 is around 250,
that of A0 is around 50.

In a pure random graph with 1, 000 vertices and 5, 000 edges RA(G) is 3.4
and an RRF (G) is 3.3, i.e., as expected the increase in the average path length
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is very similar and only slightly higher in the attack scenario than in the random
failure scenario. In a pure scale–free network with the same number of vertices
and edges, RA is higher than that in a random graph, namely 3.5. As expected,
the robustness against random failures in a pure scale–free graph is much better
than that of the random graph with RRF (G) being 3.0. Thus, we expect that
after some random failures the robustness measures after applying A0 and A1
should match that of a pure scale–free graph, i.e., approach 3.5 for RA(G) and
3.0 for RRF (G) (s. Fig. 4).

Random Scale–Free A0 after A1 after
Graph Graph 20, 000 steps 20, 000 steps

RA(G) 3.4 3.5 3.6 3.9

RRF (G) 3.3 3.0 3.4 3.1
Table 1. Comparison of the robustness of pure random graphs and pure scale–free
networks with the networks that result after applying 20, 000 random failures and
either regenerating algorithm A0 or A1. It is clear to see that the network resulting
with algorithm A0 performs worse than both the pure random and the pure scale–free
graph, while the graph resulting from A1 comes near to the robustness of a pure scale–
free graph in the case of attacks. On the other hand, it is even more fragile in the case
of directed attacks. This is due to the localized structure of the network regenerating
algorithm.

Algorithm A0 does not achieve this goal, even after 20, 000 random failures
its robustness in both cases, random failures and attacks, is worse than that
of a pure random graph or a pure scale–free graph (s. Table 1). Algorithm A1
produces a network that is nearly as robust against random failures as the pure
scale–free graph which is astonishing since it only uses local information. On
the other hand it produces networks that are even more fragile with respect to
attacks than pure scale–free graphs. But, as we could show, this is not a huge
problem since the nature of the attack will very quickly move the network’s
degree distribution back to a narrow and thus robust distribution.

In summary, this model shows that the fragility of scale–free networks can
be alleviated if the network is allowed to react to missing vertices. Of course
this is not always possible on a short time–scale, e.g., in street networks. But for
example in flight networks, a redirection of airplanes is only a minor problem.
Also in P2P–networks a new edge can be built fast and without high costs.

As we have shown in the previous paragraphs, many relevant technical net-
works show specific network structures that influence the behavior of processes
running on top of them. To analyze the behavior of a new communication pro-
tocol or the runtime of a graph algorithm on real–world networks, it is very
important to analyze the network’s structure and to model it as closely as pos-
sible. But sometimes computer scientists face the opposite perspective, namely
to design a network such that its structure supports the processes on top of it.
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Fig. 4. Evolution of RA(G) and RFT (G) in a long random failure scenario with 20, 000
events and application of A0 and A1. Starting graph is a random graph with 1000 ver-
tices and 5000 edges. (a) Algorithm A0 creates a graph that is less robust against
attacks than a pure random graph: its average path length after removing 5% of the
vertices is 3.6 compared to 3.4 in a pure random graph. It is also higher (less robust)
than the value in a pure scale–free graph which has RA(G) = 3.5. The graph’s robust-
ness against random failures is worse than that of a pure random graph (3.4 vs. 3.3).
(b) As expected, algorithm A1 is able to create a graph that is at least as robust against
random failures as a comparable scale–free graph (RA(G) ≃ 2.9 − 3 compared to 3.0
of a pure scale–free graph). Accordingly, its robustness against attacks is even worse
than a comparable scale–free graph (≃ 4 vs. 3.5), i.e., the resulting graph’s short paths
are strongly depending on the high degree vertices. Note that jumps in the curves are
caused by deletion of a high degree vertex by chance.



16

This is already a difficult task if the network is static and centrally organized,
but nowadays it becomes more and more important to design network gener-
ating rules between independent and maybe even mobile agents, like in sensor
networks, peer–to–peer networks [28], or robot swarms. In the following section
we will show how difficult this design task can be, even in a toy example.

5.2 The Sensitivity of Network Generating Algorithms in

Decentrally Organized Systems

Social systems are among the most complex systems to explore because their
global structure depends on the individual decisions of the humans that consti-
tute them. We can assume that humans will interact with each other when both
profit from this interaction in a way, i.e., we will assume that the human agents
are selfish. In internet–based communication networks, foremost P2P–networks,
these decisions are mediated by the software that manages the communication
over the internet. A P2P–network can be seen as an overlay network of the in-
ternet, i.e., every user has a buddy list of other participants with which she can
communicate directly. If a query, e.g., for a file, cannot be answered by one of
her neighbors, the query will be redirected to (all or a choice of) the neighbors
of her neighbors and so on. The complex network of this system thus represents
each participant pi as vertex vi, and vi is connected to those vertices that rep-
resent the participants on the buddy list of pi. As already sketched above, some
network structures are more favourable than others. For example, it might be
wanted that a P2P–network has a small diameter. This sounds like a network
property that has to be managed centrally. On the other hand, we know that if
every participant had only one random edge the diameter would already scale
poly–logarithmically. But why should a random edge be valuable for a single par-
ticipant? In the example of P2P–networks, especially file–sharing networks, it is
much more valuable to be connected to those participants that have a similar in-
terest than to any random participant which may never have any interesting file
to share. Thus, the question is: what kind of control can be excerted to guide the
decisions of each single user such that an overall favourable network structure
arises? Especially in software mediated communication networks, the designer
can indeed excert some control, namely by the information about the current
network structure the software feeds back to the users. Consider the following
toy example: The initial starting configuration is a tree. Each participant v is
told its eccentricity ecc(v), i.e., its maximal distance to any other participant in
the network:

ecc(v) := max
w∈V

d(v, w). (7)

Given this information, a vertex is satisfied if this eccentricity does not exceed
some constant k. In each step, one participant v is chosen at random. If its
eccentricity is larger than k, it tries to improve its position in the network: to do
so, let N2(v) denote the vertices in distance 2 from v that are no leaves. Now, v
chooses one of these vertices z uniformly at random. Let w denote the mediating
neighbor of v and z (s. Fig. 5).
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v zw

Fig. 5. One vertex v is chosen at random in every time step. If its eccentricity is greater
than k it will try to connect to a non-leaf vertex in distance 2 (black vertex). Let z be
the second neighbor chosen and w be the vertex connecting both. Then edge (v, w) will
be replaced by edge (v, z) if the eccentricity of v does not increase due to this process.

The edge (v, w) is then temporarily removed and the edge (v, z) is temporarily
built. If the eccentricity of v does not increase by this new edge, v will keep the
edge and otherwise the original edge (v, w) is re–established. It can be shown
that this procedure will eventually form a tree with diameter k, i.e., a tree in
which all participants are satisfied [49, Lemma 6.1]. Of course, it is important
how fast this globally satisfying structure will be achieved. Let now k be equal
to 2, i.e., the globally satisfying network structure is a star. Unfortunately, the
following theorem shows that this will take expectedly exponential time:

Theorem 1. [27, 49, Theorem 6.1]
Starting with a tree with diameter larger than 2, the expected runtime to generate
the star with the above sketched mechanism is bounded from below by Ω(2n).

This situation can be greatly improved by feeding back the closeness close(v)
of each participant instead of its eccentricity:

close(v) :=
∑

w∈V

d(v, w). (8)

By assuming that each participant will only accept a new edge if its closeness
is strictly decreased, it can first be shown that a globally satisfying network is
finally achieved [27, 49, Lemma 6.2]. Furthermore, the expected time until this
happens is polynomial:

Theorem 2. [27, 49, Theorem 6.2]
If the closeness is fed back to each participant, the expected runtime until an
overall satisfying network structure is generated is bounded by O(n5).

By a more involved analysis, Jansen and Theile [24] improved the upper
bound to O(n5/2) [Th. 4] and could show that the runtime is bounded from below
by Ω(n log n) [Th. 3]. Of course, this toy model of a complex system generated by
independent, selfish agents is not easily applied to realistic situations, in which
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we have to deal with graphs instead of trees, in which agents change the network
at the same time (asynchronous behaviour), and in which it is also unlikely to
be able to compute the closeness or eccentricity. But it proves the following two
points:

1. Even in a system comprised of independent agents, a designer can excert
some control over the network generating process by feeding back a well–
designed subset of structural information.

2. The choice of which information to feed back must be made very carefully
since it can make the difference between an exponential and a polynomial
runtime until a satisfying network structure is achieved.

6 Summary

The last years have shown that real–world networks have a distinct structure
that is responsible for the behavior of various processes that take place on them.
We have cites some papers that indicate that these structures also influence the
behavior of technical networks, especially the internet or peer–to–peer networks.
It could additionally be shown empirically that a small–world structure is likely
to change the runtime of algorithms solving NP-hard problems on these graphs
[45]. On the other hand, the complexity of, e.g., coloring a graph is unchanged
on scale–free networks [21]. In any case, we think that further research should
be directed to find and analyze those real–world structures that can be used to
design more efficient algorithms or that make a problem even harder to solve in
practice. As cited above, scale-free networks show a distinct behavior in computer
simulations for, e.g., virus spreading, and thus simulations of similar processes
should be based on an appropriately chosen network model that captures the
essential structures of the according real–world network. Last but not least,
computer scientists are more and more asked to design communication networks
between humans and large swarms of mobile and independent devices. We have
shown that it is indeed possible to control the network generating process even in
a decentrally system of independent agents to achieve various, globally satisfying
network structures, but we have also shown that a careful network generating
protocol design is needed to do so. In summary, complex network science is
important for computer scientists, as well in algorithm engineering as in the
design of technical networks.

7 Further Reading

As sketched in Sec. 1, the field of complex network science can be divided into
three areas: analysis, models, and processes on complex networks. At the moment
there is no textbook that comprises all of these fields. We will thus refer to some
review articles or books in each of the fields.

Network analysis was done long before the 1990s, especially in the social
sciences. The textbook by Wasserman and Faust [46] is a classic book in that
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realm. The book edited by Brandes and Erlebach covers most of these older and
some of the newer results and moreover makes the effort to present them in a
well–defined, formal framework [13]. The classic book on the analysis of random
graph models is of course the one by Bollobás [9]. A new one that takes other,
more recent random graph models into account is that by Chung and Lu [15].

Also the later results that are predominantly published by physicists have
not yet found their way in one, comprehensive textbook. The early book by
Dorogovtsev and Mendes covers almost only scale–free networks [18]. It is help-
ful since it explains some of the physics models used in this approach quite
nicely. Watts has published his Ph.D. thesis which covers small–world network
models [47]. Albert and Barabási have published a long review article (based
on Albert’s thesis) which is very readable and covers mostly scale–free network
models and their behavior [1]. An interesting overview of applied complex net-
work science is given in a handbook edited by Bornholdt and Schuster [12]. A
very good collection of original papers, partitioned into five chapters alongside
with a comprehensive introduction to each, was edited by Barabási, Watts, and
Newman [38]. Alon has published a book that covers his findings on patterns in
biological networks [3].

To our knowledge there is no comprehensive article or book that covers the
behavior of processes on networks in dependency of their structure. Thus, we
refer the reader to the last chapter of the article collection by Barabási, Watts,
and Newman where at least some of this work can be found [38].
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38. Mark E.J. Newman, Albert-László Barabási, and Duncan J. Watts, editors. The
Structure and Dynamics of Networks. Princeton University Press, Princeton and
Oxford, 2006.

39. Marc Nunkesser and Daniel Sawitzki. Network Analysis: Methodological Founda-
tions, chapter Blockmodels, pages 178–215. Springer-Verlag, 2005.
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